Low-Temperature Thermal Transport Characteristics in Epitaxial Bilayer Graphene Microbridges

被引:0
|
作者
Li, Feiming [1 ,2 ]
Miao, Wei [1 ]
Yu, Cui [3 ]
He, Zezhao [3 ]
Wang, Qingcheng [1 ,2 ]
Zhong, Jiaqiang [1 ]
Wu, Feng [1 ]
Wang, Zheng [1 ]
Zhou, Kangmin [1 ]
Ren, Yuan [1 ]
Zhang, Wen [1 ]
Li, Jing [1 ]
Shi, Shengcai [1 ]
Liu, Qingbin [3 ]
Feng, Zhihong [3 ]
机构
[1] Chinese Acad Sci, Purple Mt Observ, Nanjing 210033, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Natl Key Lab Solid State Microwave Devices & Circu, Shijiazhuang 050051, Peoples R China
来源
ACS OMEGA | 2024年 / 9卷 / 21期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
FIELD-EFFECT TRANSISTORS; BOLOMETER;
D O I
10.1021/acsomega.4c02727
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we present a study of the thermal transport of epitaxial bilayer graphene microbridges. The thermal conductance of three graphene microbridges with different lengths was measured at different temperatures using Johnson noise thermometry. We find that with the decrease of the temperature, the thermal transport in the graphene microbridges switches from electron-phonon coupling to electron diffusion, and the switching temperature is dependent on the length of the microbridge, which is in good agreement with the simulation based on a distributed hot-spot model. Moreover, the electron-phonon thermal conductance has a temperature power law of T-3 as predicted for pristine graphene and the electron-phonon coupling coefficient sigma(ep) is found to be approximately 0.18 W/(m(2) K-4), corresponding to a deformation potential D of 55 eV. In addition, the electron diffusion in the graphene microbridges adheres to the Wiedemann-Franz law, requiring no corrections to the Lorentz number.
引用
收藏
页码:23053 / 23059
页数:7
相关论文
共 50 条
  • [21] Low-temperature transport properties of graphene and multilayer graphene on 6H-SiC
    Lebedev, Alexander A.
    Agrinskaya, Nina V.
    Berezovets, Viacheslav A.
    Kozub, Veniamin I.
    Lebedev, Sergey P.
    Sitnikova, Alla A.
    Kirilenko, Demid A.
    SILICON CARBIDE AND RELATED MATERIALS 2012, 2013, 740-742 : 137 - 140
  • [22] LOW-TEMPERATURE MAGNETIC, THERMAL, AND TRANSPORT-PROPERTIES OF FESI
    HUNT, MB
    CHERNIKOV, MA
    FELDER, E
    OTT, HR
    FISK, Z
    CANFIELD, PC
    PHYSICAL REVIEW B, 1994, 50 (20): : 14933 - 14941
  • [23] LOW-TEMPERATURE ELECTRICAL AND THERMAL TRANSPORT PROPERTIES OF PURE ALUMINUM
    GARLAND, JC
    VANHARLINGEN, DJ
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1978, 8 (01): : 117 - 124
  • [24] Electrical transport and low-temperature scanning tunneling microscopy of microsoldered graphene
    Geringer, V.
    Subramaniam, D.
    Michel, A. K.
    Szafranek, B.
    Schall, D.
    Georgi, A.
    Mashoff, T.
    Neumaier, D.
    Liebmann, M.
    Morgenstern, M.
    APPLIED PHYSICS LETTERS, 2010, 96 (08)
  • [25] Low-temperature synthesis of graphene
    V. P. Novikov
    S. A. Kirik
    Technical Physics Letters, 2011, 37 : 565 - 567
  • [26] Low-Temperature Synthesis of Graphene
    Novikov, V. P.
    Kirik, S. A.
    TECHNICAL PHYSICS LETTERS, 2011, 37 (06) : 565 - 567
  • [27] Electronic transport at monolayer-bilayer junctions in epitaxial graphene on SiC
    Giannazzo, F.
    Deretzis, I.
    La Magna, A.
    Roccaforte, F.
    Yakimova, R.
    PHYSICAL REVIEW B, 2012, 86 (23)
  • [28] Low-temperature compositing of graphene to nanodiamonds by thermal reduction of graphene oxide and photocatalytic properties
    Wang, Chong
    Zhao, JieTing
    Tian, Zheng
    Luo, Yitong
    Liang, Baoyan
    DIAMOND AND RELATED MATERIALS, 2024, 143
  • [29] Low-temperature characteristics of well-type guard rings in epitaxial CMOS
    Huang, CY
    Chen, MJ
    Jeng, JK
    Wu, CY
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (12) : 2249 - 2260
  • [30] Nanoscale Thermal Transport in Single, Bilayer Graphene, and Graphite
    Gholivand, Hamed
    Donmezer, Nazli
    2016 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC), 2016,