Low-Temperature Thermal Transport Characteristics in Epitaxial Bilayer Graphene Microbridges

被引:0
|
作者
Li, Feiming [1 ,2 ]
Miao, Wei [1 ]
Yu, Cui [3 ]
He, Zezhao [3 ]
Wang, Qingcheng [1 ,2 ]
Zhong, Jiaqiang [1 ]
Wu, Feng [1 ]
Wang, Zheng [1 ]
Zhou, Kangmin [1 ]
Ren, Yuan [1 ]
Zhang, Wen [1 ]
Li, Jing [1 ]
Shi, Shengcai [1 ]
Liu, Qingbin [3 ]
Feng, Zhihong [3 ]
机构
[1] Chinese Acad Sci, Purple Mt Observ, Nanjing 210033, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Natl Key Lab Solid State Microwave Devices & Circu, Shijiazhuang 050051, Peoples R China
来源
ACS OMEGA | 2024年 / 9卷 / 21期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
FIELD-EFFECT TRANSISTORS; BOLOMETER;
D O I
10.1021/acsomega.4c02727
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we present a study of the thermal transport of epitaxial bilayer graphene microbridges. The thermal conductance of three graphene microbridges with different lengths was measured at different temperatures using Johnson noise thermometry. We find that with the decrease of the temperature, the thermal transport in the graphene microbridges switches from electron-phonon coupling to electron diffusion, and the switching temperature is dependent on the length of the microbridge, which is in good agreement with the simulation based on a distributed hot-spot model. Moreover, the electron-phonon thermal conductance has a temperature power law of T-3 as predicted for pristine graphene and the electron-phonon coupling coefficient sigma(ep) is found to be approximately 0.18 W/(m(2) K-4), corresponding to a deformation potential D of 55 eV. In addition, the electron diffusion in the graphene microbridges adheres to the Wiedemann-Franz law, requiring no corrections to the Lorentz number.
引用
收藏
页码:23053 / 23059
页数:7
相关论文
共 50 条
  • [1] Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions
    Weingart, S.
    Bock, C.
    Kunze, U.
    Speck, F.
    Seyller, Th.
    Ley, L.
    APPLIED PHYSICS LETTERS, 2009, 95 (26)
  • [2] Low-temperature hysteresis in the field effect of bilayer graphene
    Barthold, P.
    Luedtke, T.
    Schmidt, H.
    Haug, R. J.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [3] Low-temperature thermal transport in nanowires
    A. V. Zhukov
    S. Yang
    J. Cao
    Journal of Experimental and Theoretical Physics Letters, 2005, 81 : 190 - 194
  • [4] Low-temperature thermal transport in nanowires
    Zhukov, AV
    Yang, S
    Cao, J
    JETP LETTERS, 2005, 81 (04) : 190 - 194
  • [5] Low-temperature thermal conductances of amorphous dielectric microbridges in the diffusive to ballistic transition
    Withington, S.
    Goldie, D. J.
    Velichko, A. V.
    PHYSICAL REVIEW B, 2011, 83 (19)
  • [6] Low-temperature thermal conductivity in polycrystalline graphene
    Kolesnikov, D. V.
    Osipov, V. A.
    EPL, 2012, 100 (02)
  • [7] CHARACTERISTICS OF LOW-TEMPERATURE SILICON EPITAXIAL-FILMS
    DROWLEY, CI
    TURNER, JE
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C478 - C478
  • [8] LOW-TEMPERATURE TRANSPORT IN EPITAXIAL COSI2 FILMS
    DITUSA, JF
    PARPIA, JM
    PHILLIPS, JM
    PHYSICA B, 1990, 165 : 863 - 864
  • [9] LOW-TEMPERATURE THERMAL TRANSPORT IN SILICA AEROGELS
    SCHEUERPFLUG, P
    MORPER, HJ
    NEUBERT, G
    FRICKE, J
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1991, 24 (08) : 1395 - 1403
  • [10] Low Temperature Characteristics of Electronic Density of States in Epitaxial Graphene
    N. G. Bobenko
    V. E. Egorushkin
    N. V. Melnikova
    A. A. Belosludtseva
    L. D. Barkalov
    A. N. Ponomarev
    Journal of Structural Chemistry, 2018, 59 : 853 - 859