Theory and Construction of Quasi-Monte Carlo Rules for Asian Option Pricing and Density Estimation

被引:0
|
作者
Gilbert, Alexander D. [1 ]
Kuo, Frances Y. [1 ]
Sloan, Ian H. [1 ]
Srikumar, Abirami [1 ]
机构
[1] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Option pricing; quasi-Monte Carlo; Randomly shifted lattice rule; Preintegration; Conditional sampling; SPACES;
D O I
10.1007/978-3-031-59762-6_13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose and analyse a method for estimating three quantities related to an Asian option: the fair price, the cumulative distribution function, and the probability density. The method involves preintegration with respect to one well chosen integration variable to obtain a smooth function of the remaining variables, followed by the application of a tailored lattice Quasi-Monte Carlo rule to integrate over the remaining variables.
引用
收藏
页码:277 / 295
页数:19
相关论文
共 50 条
  • [31] Monte Carlo extension of quasi-Monte Carlo
    Owen, AB
    1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 571 - 577
  • [32] Hierarchical adaptive sparse grids and quasi-Monte Carlo for option pricing under the rough Bergomi model
    Bayer, Christian
    Ben Hammouda, Chiheb
    Tempone, Raul
    QUANTITATIVE FINANCE, 2020, 20 (09) : 1457 - 1473
  • [33] On Quasi-Monte Carlo Rules Achieving Higher Order Convergence
    Dick, Josef
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 73 - 96
  • [34] Construction of Quasi-Monte Carlo Rules for Multivariate Integration in Spaces of Permutation-Invariant Functions
    Dirk Nuyens
    Gowri Suryanarayana
    Markus Weimar
    Constructive Approximation, 2017, 45 : 311 - 344
  • [35] Construction of Quasi-Monte Carlo Rules for Multivariate Integration in Spaces of Permutation-Invariant Functions
    Nuyens, Dirk
    Suryanarayana, Gowri
    Weimar, Markus
    CONSTRUCTIVE APPROXIMATION, 2017, 45 (02) : 311 - 344
  • [36] Quasi-Monte Carlo - Discrepancy between theory and practice
    Tezuka, S
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 124 - 140
  • [37] QUANTILE ESTIMATION VIA A COMBINATION OF CONDITIONAL MONTE CARLO AND RANDOMIZED QUASI-MONTE CARLO
    Nakayama, Marvin K.
    Kaplan, Zachary T.
    Li, Yajuan
    Tuffin, Bruno
    L'Ecuyer, Pierre
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 301 - 312
  • [38] Option Sensitivity Simulation by Malliavin Calculus and Quasi-Monte Carlo Methods
    Xu, Yongjia
    Lai, Yongzeng
    Zeng, Yan
    2012 FIFTH INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING (BIFE), 2012, : 149 - 153
  • [39] QUASI-MONTE CARLO INTEGRATION
    MOROKOFF, WJ
    CAFLISCH, RE
    JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (02) : 218 - 230
  • [40] Improved Parallel Randomized Quasi Monte Carlo Algorithm of Asian Option Pricing on MIC Architecture
    Yao, Peng Hui
    Hu, Yong Hong
    Lu, Zhong Hua
    Wang, Yan Gang
    Wang, Jue
    PROCEEDINGS OF THIRTEENTH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE, (DCABES 2014), 2014, : 157 - 161