Few-Shot Medical Image Segmentation via Generating Multiple Representative Descriptors

被引:7
|
作者
Cheng, Ziming [1 ]
Wang, Shidong [2 ]
Xin, Tong [1 ,3 ]
Zhou, Tao [4 ]
Zhang, Haofeng [1 ]
Shao, Ling [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, England
[3] Newcastle Univ, Sch Comp, Newcastle Upon Tyne NE1 7RU, England
[4] Univ Chinese Acad Sci, UCAS Terminus AI Lab, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical image segmentation; few-shot learning; multiple representative descriptors; prototype learning; imbalance alleviation;
D O I
10.1109/TMI.2024.3358295
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automatic medical image segmentation has witnessed significant development with the success of large models on massive datasets. However, acquiring and annotating vast medical image datasets often proves to be impractical due to the time consumption, specialized expertise requirements, and compliance with patient privacy standards, etc. As a result, Few-shot Medical Image Segmentation (FSMIS) has become an increasingly compelling research direction. Conventional FSMIS methods usually learn prototypes from support images and apply nearest-neighbor searching to segment the query images. However, only a single prototype cannot well represent the distribution of each class, thus leading to restricted performance. To address this problem, we propose to Generate Multiple Representative Descriptors (GMRD), which can comprehensively represent the commonality within the corresponding class distribution. In addition, we design a Multiple Affinity Maps based Prediction (MAMP) module to fuse the multiple affinity maps generated by the aforementioned descriptors. Furthermore, to address intra-class variation and enhance the representativeness of descriptors, we introduce two novel losses. Notably, our model is structured as a dual-path design to achieve a balance between foreground and background differences in medical images. Extensive experiments on four publicly available medical image datasets demonstrate that our method outperforms the state-of-the-art methods, and the detailed analysis also verifies the effectiveness of our designed module.
引用
收藏
页码:2202 / 2214
页数:13
相关论文
共 50 条
  • [21] Few-Shot Learning for Medical Image Classification
    Cai, Aihua
    Hu, Wenxin
    Zheng, Jun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 441 - 452
  • [22] FICUS: FEW-SHOT IMAGE CLASSIFICATION WITH UNSUPERVISED SEGMENTATION
    Lys, Jonathan
    Lin, Frederic
    Beliveau, Clement
    Decaestecker, Jules
    Bendou, Yassir
    Abdali, Aymane
    Pasdeloup, Bastien
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1791 - 1795
  • [23] Survey on Image Semantic Segmentation in Dilemma of Few-Shot
    Wei, Ting
    Li, Xinlei
    Liu, Hui
    Computer Engineering and Applications, 2024, 59 (02) : 1 - 11
  • [24] Few-Shot Semantic Segmentation via Mask Aggregation
    Ao, Wei
    Zheng, Shunyi
    Meng, Yan
    Yang, Yang
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [25] Meta-learning with implicit gradients in a few-shot setting for medical image segmentation
    Khadka, Rabindra
    Jha, Debesh
    Hicks, Steven
    Thambawita, Vajira
    Riegler, Michael A.
    Ali, Sharib
    Halvorsen, Pal
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 143
  • [26] Cross Modulation and Region Contrast Learning Network for Few-Shot Medical Image Segmentation
    Tang, Kangting
    Wang, Shanjie
    Chen, Yadang
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1670 - 1674
  • [27] Beyond singular prototype: A prototype splitting strategy for few-shot medical image segmentation
    Teng, Pengrui
    Liu, Wenjian
    Wang, Xuesong
    Wu, Di
    Yuan, Changan
    Cheng, Yuhu
    Huang, De-Shuang
    NEUROCOMPUTING, 2024, 597
  • [28] Learning what and where to segment: A new perspective on medical image few-shot segmentation
    Feng, Yong
    Wang, Yonghuai
    Li, Honghe
    Qu, Mingjun
    Yang, Jinzhu
    MEDICAL IMAGE ANALYSIS, 2023, 87
  • [29] Few-shot medical image segmentation using a global correlation network with discriminative embedding
    Sun, Liyan
    Li, Chenxin
    Ding, Xinghao
    Huang, Yue
    Chen, Zhong
    Wang, Guisheng
    Yu, Yizhou
    Paisley, John
    Computers in Biology and Medicine, 2022, 140
  • [30] Q-Net: Query-Informed Few-Shot Medical Image Segmentation
    Shen, Qianqian
    Li, Yanan
    Jin, Jiyong
    Liu, Bin
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 610 - 628