A note on the plane curve singularities in positive characteristic

被引:0
|
作者
Barroso, E. V. E. L. I. A. R. GARCiA [1 ]
Ploski, Arkadiusz [2 ]
机构
[1] Univ La Laguna, Dept Matemat Estadist & IO, IMAULL, Apartado Correos 456, San Cristobal la Laguna 38200, Tenerife, Spain
[2] Kielce Univ Technol, Dept Math & Phys, Al 1000 PP7, PL-25314 Kielce, Poland
关键词
Milnor number; Newton polygon; non-degeneracy; NEWTON POLYGON;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an algebroid plane curve f = 0 over an algebraically closed field of characteristic p >= 0 we consider the Milnor number mu (f), the delta invariant delta(f) and the number r(f) of its irreducible components. Put (sic)(f) = 2 delta(f)- r(f) + 1. If p = 0 then (sic)(f ) = mu (f) (the Milnor formula). If p > 0 mu (f ) is not an invariant and mu (f) plays the role of mu (f). Let Nf be the Newton polygon of f. We define the numbers mu (N-f) and r(N-f) which can be computed by explicit formulas. The aim of this note is to give a simple proof of the inequality (sic)(f)- mu (N-f) >= r(N-f )- r(f) >= 0 due to Boubakri, Greuel and Markwig. We also prove that mu (f) = mu (N-f) when f is non-degenerate.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [41] A bound for the Milnor number of plane curve singularities
    Ploski, Arkadiusz
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (05): : 688 - 693
  • [42] On the freeness of equisingular deformations of plane curve singularities
    Damon, J
    TOPOLOGY AND ITS APPLICATIONS, 2002, 118 (1-2) : 31 - 43
  • [43] MULTIPLICITY AND LATTICE COHOMOLOGY OF PLANE CURVE SINGULARITIES
    Kubasch, Alexander A.
    Nemethi, Andras
    Schefler, Gergo
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 69 (02): : 191 - 234
  • [44] Improving the computation of invariants of plane curve singularities
    Binyamin, Muhammad Ahsan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (01): : 51 - 57
  • [45] Examples: Families Associated with Plane Curve Singularities
    Nemethi, Andras
    Szilard, Agnes
    MILNOR FIBER BOUNDARY OF A NON-ISOLATED SURFACE SINGULARITY, 2012, 2037 : 83 - 97
  • [46] Motivic Milnor Fibers of Plane Curve Singularities
    Lê Q.T.
    Vietnam Journal of Mathematics, 2018, 46 (3) : 493 - 506
  • [47] Iterated inverse images of plane curve singularities
    Casas-Alvero, Eduardo
    Roe, Joaquim
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (12) : 2319 - 2328
  • [48] MODULI OF PLANE CURVE SINGULARITIES .1.
    WASHBURN, S
    JOURNAL OF ALGEBRA, 1979, 56 (01) : 91 - 102
  • [49] On the topology of the image by a morphism of plane curve singularities
    Delgado, F.
    Maugendre, H.
    REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (02): : 369 - 384
  • [50] Auslander algebras and simple plane curve singularities
    Bilodeau, J
    Representations of Algebras and Related Topics, 2005, 45 : 99 - 107