In-locus gene silencing in plants using genome editing

被引:3
|
作者
Shen, Rundong [1 ,2 ,3 ,4 ]
Yao, Qi [1 ,4 ]
Tan, Xinhang [4 ]
Ren, Wendan [1 ]
Zhong, Dating [1 ,4 ]
Zhang, Xuening [1 ]
Li, Xinbo [2 ,3 ]
Dong, Chao [2 ,3 ]
Cao, Xuesong [5 ,6 ]
Tian, Yifu [1 ,2 ,3 ]
Zhu, Jian-Kang [2 ,3 ,5 ,6 ]
Lu, Yuming [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Collaborat Innovat Ctr Agriseeds, Joint Ctr Single Cell Biol, Sch Agr & Biol, Shanghai 200240, Peoples R China
[2] Chinese Acad Agr Sci CAAS, Inst Crop Sci, Natl Nanfan Res Inst, Sanya 572024, Peoples R China
[3] Minist Agr & Rural Affairs, Key Lab Gene Editing Technol Hainan, Sanya 572024, Peoples R China
[4] Chinese Acad Sci, Shanghai Ctr Plant Stress Biol, Ctr Excellence Mol Plant Sci, Shanghai 201602, Peoples R China
[5] Southern Univ Sci & Technol, Inst Adv Biotechnol, Shenzhen 518055, Peoples R China
[6] Southern Univ Sci & Technol, Sch Life Sci, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 国家重点研发计划;
关键词
downregulation; genome editing; molecular breeding; rice; sequence insertion; QUANTITATIVE TRAIT VARIATION; TRANSLATION; EXPRESSION; ENHANCERS; YIELD;
D O I
10.1111/nph.19856
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Gene silencing is crucial in crop breeding for desired trait development. RNA interference (RNAi) has been used widely but is limited by ectopic expression of transgenes and genetic instability. Introducing an upstream start codon (uATG) into the 5 ' untranslated region (5 ' UTR) of a target gene may 'silence' the target gene by inhibiting protein translation from the primary start codon (pATG). Here, we report an efficient gene silencing method by introducing a tailor-designed uATG-containing element (ATGE) into the 5 ' UTR of genes in plants, occupying the original start site to act as a new pATG. Using base editing to introduce new uATGs failed to silence two of the tested three rice genes, indicating complex regulatory mechanisms. Precisely inserting an ATGE adjacent to pATG achieved significant target protein downregulation. Through extensive optimization, we demonstrated this strategy substantially and consistently downregulated target protein expression. By designing a bidirectional multifunctional ATGE4, we enabled tunable knockdown from 19% to 89% and observed expected phenotypes. Introducing ATGE into Waxy, which regulates starch synthesis, generated grains with lower amylose, revealing the value for crop breeding. Together, we have developed a programmable and robust method to knock down gene expression in plants, with potential for biological mechanism exploration and crop enhancement.
引用
收藏
页码:2501 / 2511
页数:11
相关论文
共 50 条
  • [21] Whole genome sequencing and gene editing via silencing RNA in some botryllid ascidians
    Ogul, F. N.
    Karahan, A.
    ISJ-INVERTEBRATE SURVIVAL JOURNAL, 2020, 17 : 26 - 26
  • [22] TALE-based organellar genome editing and gene expression in plants
    Jer-Young Lin
    Yu-Chang Liu
    Yan-Hao Tseng
    Ming-Tsair Chan
    Ching-Chun Chang
    Plant Cell Reports, 2024, 43
  • [23] Biotechnological Approaches: Gene Overexpression, Gene Silencing, and Genome Editing to Control Fungal and Oomycete Diseases in Grapevine
    Capriotti, Luca
    Baraldi, Elena
    Mezzetti, Bruno
    Limera, Cecilia
    Sabbadini, Silvia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 29
  • [24] Precise Genome Editing in Plants Using Homology Directed Repair
    Becker, M.
    Hensel, G.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2019, 55 : S59 - S60
  • [25] Efficient genome editing in plants using a CRISPR/Cas system
    Feng, Zhengyan
    Zhang, Botao
    Ding, Wona
    Liu, Xiaodong
    Yang, Dong-Lei
    Wei, Pengliang
    Cao, Fengqiu
    Zhu, Shihua
    Zhang, Feng
    Mao, Yanfei
    Zhu, Jian-Kang
    CELL RESEARCH, 2013, 23 (10) : 1229 - 1232
  • [26] Efficient genome editing in plants using a CRISPR/Cas system
    Zhengyan Feng
    Botao Zhang
    Wona Ding
    Xiaodong Liu
    Dong-Lei Yang
    Pengliang Wei
    Fengqiu Cao
    Shihua Zhu
    Feng Zhang
    Yanfei Mao
    Jian-Kang Zhu
    Cell Research, 2013, 23 : 1229 - 1232
  • [27] Temporally gene knockout using heat shock-inducible genome-editing system in plants
    Liang, Zhen
    Wei, Sha
    Wu, Yuqing
    Guo, Yingjie
    Zhang, Ben
    Yang, Honghu
    PLANT GENOME, 2023, 16 (03):
  • [28] Gene Editing in Plants Using Plant Viruses.
    Kumar, S. P. Dinesh
    Nagalakshmi, U.
    Meier, N.
    Liu, J. Y.
    Voytas, D. F.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2022, 58 (SUPPL 1) : S10 - S11
  • [29] Genome editing of the bovine beta lactoglobulin locus
    Wagner, S.
    Wei, J.
    Lu, D.
    Maclean, P.
    Mccracken, J.
    Delaney, S.
    Popovic, L.
    Cole, S.
    Carlson, D. F.
    Fahrenkrug, S. C.
    Laible, G.
    TRANSGENIC RESEARCH, 2016, 25 (01) : 115 - 116
  • [30] Gulo gene locus, a new gene editing locus for mammalian cells
    Habu, Toshiyuki
    Ishikawa, Honoka
    Kim, Jiyeong
    BIOTECHNOLOGY JOURNAL, 2022, 17 (07)