Multi-omics integration reveals potential stage-specific druggable targets in T-cell acute lymphoblastic leukemia

被引:0
|
作者
Yan, Zijun [1 ,2 ]
Xia, Jie [5 ]
Cao, Ziyang [1 ,2 ]
Zhang, Hongyang [1 ,2 ]
Wang, Jinxia [1 ,2 ]
Feng, Tienan [1 ,4 ]
Shu, Yi [3 ]
Zou, Lin [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Childrens Hosp, Sch Med, Clin Res Unit, Shanghai 200062, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Pediat Infect Immun & Critical Care Med, Sch Med, Shanghai 200062, Peoples R China
[3] Chongqing Med Univ, Childrens Hosp, Ctr Clin Lab Med, Chongqing 400014, Peoples R China
[4] Shanghai Jiao Tong Univ, Clin Res Inst, Sch Med, Shanghai 200025, Peoples R China
[5] Guizhou Med Univ, Sch Big Hlth, Bioinformat & Biomed Bigdata Min Lab, Guiyang 554300, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-omics; Stage-specific druggable targets; Targeted therapeutic strategies; T-cell acute lymphoblastic leukemia; Drug repositioning; OF-FUNCTION MUTATIONS; CANCER; CHEMOTHERAPY; MEBENDAZOLE; TRANSCRIPT; ONCOGENES; PROMOTES; THERAPY; BENEFIT; ADULTS;
D O I
10.1016/j.gendis.2023.03.022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
T-cell acute lymphoblastic leukemia (T-ALL), a heterogeneous hematological malignancy, is caused by the developmental arrest of normal T-cell progenitors. The development of targeted therapeutic regimens is impeded by poor knowledge of the stage-specific aberrances in this disease. In this study, we performed multi-omics integration analysis, which included mRNA expression, chromatin accessibility, and gene-dependency database analyses, to identify potential stage-specific druggable targets and repositioned drugs for this disease. This multi-omics integration helped identify 29 potential pathological genes for T-ALL. These genes exhibited tissue-specific expression profiles and were enriched in the cell cycle, hematopoietic stem cell differentiation, and the AMPK signaling pathway. Of these, four known druggable targets (CDK6, TUBA1A, TUBB, and TYMS) showed dysregulated and stage-specific expression in malignant T cells and may serve as stage-specific targets in T-ALL. The TUBA1A expression level was higher in the early T cell precursor (ETP)-ALL cells, while TUBB and TYMS were mainly highly expressed in malignant T cells arrested at the CD4 and CD8 double-positive or single-positive stage. CDK6 exhibited a U-shaped expression pattern in malignant T cells along the na & imath;<spacing diaeresis>veto maturation stages. Furthermore, mebendazole and gemcitabine, which target TUBA1A and TYMS, respectively, exerted stage-specific inhibitory effects on T-ALL cell lines, indicating their potential stage-specific antileukemic role in T-ALL. Collectively, our findings might aid in identifying potential stage-specific druggable targets and are promising for achieving more precise therapeutic strategies for T-ALL. <feminine ordinal indicator> 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:16
相关论文
共 50 条
  • [21] T-Cell Lymphoblastic Lymphoma and T-Cell Acute Lymphoblastic Leukemia: A Separate Entity?
    Hoelzer, Dieter
    Goekbuget, Nicola
    CLINICAL LYMPHOMA & MYELOMA, 2009, 9 : S214 - S221
  • [22] Multi-omics data integration reveals molecular targets of carfilzomib resistance in multiple myeloma
    Huber, Julia
    Malyutina, Alina
    Bolomsky, Arnold
    Zojer, Niklas
    Schreder, Martin
    Schneller, Anja
    Pfeiffer, Christina
    Miettinen, Juho
    Tang, Jing
    Heckman, Caroline
    Ludwig, Heinz
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2022, 22 : S92 - S93
  • [23] Epigenetics in T-cell acute lymphoblastic leukemia
    Peirs, Sofie
    Van der Meulen, Joni
    Van de Walle, Inge
    Taghon, Tom
    Speleman, Frank
    Poppe, Bruce
    Van Vlierberghe, Pieter
    IMMUNOLOGICAL REVIEWS, 2015, 263 (01) : 50 - 67
  • [24] ACUTE LYMPHOBLASTIC LEUKEMIA - OF T-CELL ORIGIN
    SZEKELY, IE
    FISHER, DR
    SCHUMACHER, HR
    LANCET, 1973, 1 (7806): : 768 - 769
  • [25] Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines
    Perbellini, Omar
    Cavallini, Chiara
    Chignola, Roberto
    Galasso, Marilisa
    Scupoli, Maria T.
    CELLS, 2022, 11 (13)
  • [26] CApSiZing T-cell acute lymphoblastic leukemia
    Mandleywala, Komal
    Herranz, Daniel
    HAEMATOLOGICA, 2024, 109 (06)
  • [27] Pediatric T-Cell Acute Lymphoblastic Leukemia
    Karrman, Kristina
    Johansson, Bertil
    GENES CHROMOSOMES & CANCER, 2017, 56 (02): : 89 - 116
  • [28] AKR T-CELL ACUTE LYMPHOBLASTIC LEUKEMIA - MODEL FOR HUMAN T-CELL LEUKEMIA
    BORTIN, MM
    TRUITT, RL
    BIOMEDICINE, 1977, 26 (05): : 309 - 311
  • [29] Phosphoproteomic Analysis Reveals a Different Proteomic Profile in Pediatric Patients With T-Cell Lymphoblastic Lymphoma or T-Cell Acute Lymphoblastic Leukemia
    Veltri, Giulia
    Lovisa, Federica
    Cortese, Giuliana
    Pillon, Marta
    Carraro, Elisa
    Cesaro, Simone
    Provenzi, Massimo
    Buffardi, Salvatore
    Francescato, Samuela
    Biffi, Alessandra
    Buldini, Barbara
    Conter, Valentino
    Serafin, Valentina
    Mussolin, Lara
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [30] Integrative Analysis of Multi-Omics Data to Identify Deregulated Molecular Pathways and Druggable Targets in Chronic Lymphocytic Leukemia
    Mavridou, Dimitra
    Psatha, Konstantina
    Aivaliotis, Michalis
    JOURNAL OF PERSONALIZED MEDICINE, 2024, 14 (08):