共 50 条
NEW FRACTIONAL INTEGRAL INEQUALITIES FOR LR-h-PREINVEX INTERVAL-VALUED FUNCTIONS
被引:0
|作者:
Tan, Yun
[1
]
Zhao, Dafang
[1
]
机构:
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi Key Lab Metaverse & Virtual Simulat, Huangshi 435002, Peoples R China
基金:
湖北省教育厅重点项目;
关键词:
Hermite-Hadamard Inequalities;
Hermite-Hadamard-Fej & eacute;
r Inequalities;
LR-h-Preinvex Functions;
Interval-Valued Functions;
Fractional Integrals;
HADAMARD TYPE INEQUALITIES;
CONVEX-FUNCTIONS;
D O I:
10.1142/S0218348X2450083X
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Based on the pseudo-order relation, we introduce the concept of left and right h-preinvex interval-valued functions (LR-h-PIVFs). Further, we establish the Hermite-Hadamard and Hermite-Hadamard-Fejer-type estimates for LR-h-PIVFs using generalized fractional integrals. Finally, an example of interval-valued fractional integrals is provided to illustrate the validity of the results derived herein. Our results not only extend some existing inequalities for Hadamard, Riemann-Liouville, and Katugampola fractional integrals, but also provide new insights for future research on generalized convexity and IVFs, among others.
引用
收藏
页数:14
相关论文