Learning-to-Rank with Nested Feedback

被引:0
|
作者
Sagtani, Hitesh [1 ]
Jeunen, Olivier [1 ]
Ustimenko, Aleksei [1 ]
机构
[1] ShareChat, Bengaluru, India
关键词
Learning-to-Rank; Recommender systems; User feedback;
D O I
10.1007/978-3-031-56063-7_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many platforms on the web present ranked lists of content to users, typically optimized for engagement-, satisfaction- or retention-driven metrics. Advances in the Learning-to-Rank (LTR) research literature have enabled rapid growth in this application area. Several popular interfaces now include nested lists, where users can enter a 2nd-level feed via any given 1st-level item. Naturally, this has implications for evaluation metrics, objective functions, and the ranking policies we wish to learn. We propose a theoretically grounded method to incorporate 2nd level feedback into any 1st-level ranking model. Online experiments on a large-scale recommendation system confirm our theoretical findings.
引用
收藏
页码:306 / 315
页数:10
相关论文
共 50 条
  • [21] A learning-to-rank method for information updating task
    Minh Quang Nhat Pham
    Minh Le Nguyen
    Bach Xuan Ngo
    Shimazu, Akira
    APPLIED INTELLIGENCE, 2012, 37 (04) : 499 - 510
  • [22] A learning-to-rank method for information updating task
    Minh Quang Nhat Pham
    Minh Le Nguyen
    Bach Xuan Ngo
    Akira Shimazu
    Applied Intelligence, 2012, 37 : 499 - 510
  • [23] Controlling Popularity Bias in Learning-to-Rank Recommendation
    Abdollahpouri, Himan
    Burke, Robin
    Mobasher, Bamshad
    PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), 2017, : 42 - 46
  • [24] Addressing Trust Bias for Unbiased Learning-to-Rank
    Agarwal, Aman
    Wang, Xuanhui
    Li, Cheng
    Bendersky, Mike
    Najork, Marc
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 4 - 14
  • [25] Rax: Composable Learning-to-Rank using JAX
    Jagerman, Rolf
    Wang, Xuanhui
    Zhuang, Honglei
    Qin, Zhen
    Bendersky, Michael
    Najork, Marc
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 3051 - 3060
  • [26] Cross-Silo Federated Learning-to-Rank
    Shi D.-Y.
    Wang Y.-S.
    Zheng P.-F.
    Tong Y.-X.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (03): : 669 - 688
  • [27] RANKING AUTHORS WITH LEARNING-TO-RANK TOPIC MODELING
    Yang, Zaihan
    Hong, Liangjie
    Yin, Dawei
    Davison, Brian D.
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2015, 11 (04): : 1295 - 1316
  • [28] Controlling Fairness and Bias in Dynamic Learning-to-Rank
    Morik, Marco
    Singh, Ashudeep
    Hong, Jessica
    Joachims, Thorsten
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 429 - 438
  • [29] Rax: Composable Learning-to-Rank Using JAX
    Jagerman, Rolf
    Wang, Xuanhui
    Zhuang, Honglei
    Qin, Zhen
    Bendersky, Michael
    Najork, Marc
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2022, : 3051 - 3060
  • [30] Distributionally robust learning-to-rank under the Wasserstein metric
    Sotudian, Shahabeddin
    Chen, Ruidi
    Paschalidis, Ioannis Ch.
    PLOS ONE, 2023, 18 (03):