TRPM4 mRNA stabilization by METTL3-mediated m6A modification promotes calcific aortic valve inflammation

被引:0
|
作者
Wu, Jianguo [1 ]
Huang, Haozong [1 ]
Yang, Wenkai [1 ]
Xue, Tufeng [1 ]
Wang, Wenjuan [1 ]
Zheng, Guang-Di [1 ]
机构
[1] Cent Peoples Hosp Zhanjiang, Dept Cardiac & Macrovasc Surg, 236 Yuanzhu Rd, Zhanjiang 524045, Guangdong, Peoples R China
关键词
Transient receptor potential melastatin 4; (TRPM4); Calcific aortic valvedisease(CAVD); Inflammation; N6-methyladenosine (m6A); JNK-MAPK signaling pathway; CHANNELS; PROTEIN; MIGRATION; PATHWAYS; INNATE; DECAY;
D O I
10.1016/j.heliyon.2024.e31871
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Transient receptor potential melastatin 4 (TRPM4) affects immune responses by regulating calcium homeostasis, but its role in calcific aortic valve inflammation remains unclear. This study aimed to assess the expression and function of TRPM4 in patients with or without calcific aortic valve disease (CAVD). Methods: The mRNA and protein expression levels of TRPM4 and related factors in calcified and noncalcified tissues were measured using qRT-PCR and Western blot. The proteins interacting with TRPM4 were confirmed by RNA pull-down and RNA immunoprecipitation assays. DualLuciferase Reporter Assay was performed to confirm the m6A site of TRPM4. Results: The mRNA expression levels of TRPM4, TLR4, IL-6, MCP-1, TNF-alpha, and NF-kappa B p65 were significantly higher in calcified aortic valve tissues than in noncalcified tissues, and TRPM4 was significantly positively correlated with inflammation-related factors. The protein expression level of TRPM4, TLR4 and NF-kappa B p65 were significantly higher in calcified aortic valve tissues than in noncalcified tissues. N6-methyladenosine (m6A) modification of TRPM4 mRNA by METTL3YTHDF1 up-regulated its expression in CAVD. And TRPM4 promoted the level of inflammation via activation of the JNK-MAPK signaling pathway, after knockdown TRPM4, the production of proinflammatory cytokines was significantly suppressed. Conclusion: The results indicate the pivotal role of TRPM4 in CAVD and highlight METTL3mediated m6A modification of TRPM4 in promoting inflammation through JNK-MAPK signaling pathway. This work provides potential therapeutic strategy to impede inflammation in CAVD.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNA
    Fu, Wei
    Liu, Lixin
    Tong, Suiju
    THORACIC CANCER, 2024, 15 (17) : 1357 - 1368
  • [32] Mechanism of METTL3-Mediated m6A Modification in Cardiomyocyte Pyroptosis and Myocardial Ischemia–Reperfusion Injury
    Xiang Wang
    Yi Li
    Jiahan Li
    Shiguo Li
    Fang Wang
    Cardiovascular Drugs and Therapy, 2023, 37 : 435 - 448
  • [33] METTL3-Mediated m6A Modification Controls Splicing Factor Abundance and Contributes to Aggressive CLL
    Wu, Yiming
    Jin, Meiling
    Fernandez, Mike
    Hart, Kevyn L.
    Liao, Aijun
    Ge, Xinzhou
    Fernandes, Stacey M.
    McDonald, Tinisha
    Chen, Zhenhua
    Roth, Daniel
    Ghoda, Lucy Y.
    Marcucci, Guido
    Kalkum, Markus
    Pillai, Raju K.
    V. Danilov, Alexey
    Li, Jingyi Jessica
    Chen, Jianjun
    Brown, Jennifer R.
    Rosen, Steven T.
    Siddiqi, Tanya
    Wang, Lili
    BLOOD CANCER DISCOVERY, 2023, 4 (03): : 228 - 245
  • [34] METTL3-mediated m6A modification controls splicing factor abundance and contributes to CLL progression
    Wu, Yiming
    Jin, Meiling
    Fernandez, Mike
    Hart, Kevyn
    Liao, Aijun
    Fernandes, Stacey M.
    McDonald, Tinisha
    Chen, Zhenhua
    Roth, Daniel
    Ghoda, Lucy
    Marcucci, Guido
    Kalkum, Markus
    Pillai, Raju K.
    Danilov, Alexey V.
    Chen, Jianjun
    Brown, Jennifer R.
    Rosen, Steven T.
    Siddiqi, Tanya
    Wang, Lili
    CANCER RESEARCH, 2023, 83 (07)
  • [35] Hypoxic stabilization of RIPOR3 mRNA via METTL3-mediated m6A methylation drives breast cancer progression and metastasis
    Xiong, Jingjing
    Zhou, Zirui
    Jiang, Yulong
    Li, Qifang
    Geng, Zuhan
    Guo, Jiahao
    Yan, Chaojun
    Zhang, Jing
    ONCOGENE, 2024, 43 (47) : 3426 - 3441
  • [36] Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis
    Shujie Chen,
    Lu Zhang
    Mengjie Li
    Ying Zhang
    Meng Sun
    Lingfang Wang
    Jiebo Lin
    Yun Cui
    Qian Chen
    Chenqi Jin
    Xiang Li
    Boya Wang
    Hao Chen
    Tianhua Zhou
    Liangjing Wang
    Chih-Hung Hsu
    Wei Zhuo
    Nature Communications, 13
  • [37] METTL3-mediated m6A modification of KIF3C-mRNA promotes prostate cancer progression and is negatively regulated by miR-320d
    Ma, Honggui
    Zhang, Facai
    Zhong, Quliang
    Hou, Jianquan
    AGING-US, 2021, 13 (18): : 22332 - 22344
  • [38] Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis
    Chen, Shujie
    Zhang, Lu
    Li, Mengjie
    Zhang, Ying
    Sun, Meng
    Wang, Lingfang
    Lin, Jiebo
    Cui, Yun
    Chen, Qian
    Jin, Chenqi
    Li, Xiang
    Wang, Boya
    Chen, Hao
    Zhou, Tianhua
    Wang, Liangjing
    Hsu, Chih-Hung
    Zhuo, Wei
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [39] METTL3-mediated m6A modification of circGLIS3 promotes prostate cancer progression and represents a potential target for ARSI therapy
    Cheng, Xiaofeng
    Yang, Heng
    Chen, Yujun
    Zeng, Zhenhao
    Liu, Yifu
    Zhou, Xiaochen
    Zhang, Cheng
    Xie, An
    Wang, Gongxian
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2024, 29 (01)
  • [40] Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells
    Xiong, Jia
    He, Jia
    Zhu, Jun
    Pan, Jiongli
    Liao, Weijie
    Ye, Hongying
    Wang, Haofei
    Song, Yinjing
    Du, Yue
    Cui, Bijun
    Xue, Maoguang
    Zheng, Wanling
    Kong, Xiangxing
    Jiang, Kai
    Ding, Kefeng
    Lai, Lihua
    Wang, Qingqing
    MOLECULAR CELL, 2022, 82 (09) : 1660 - +