Mean Li-Yorke chaos along any infinite sequence for infinite-dimensional random dynamical systems

被引:0
|
作者
Liu, Chunlin [1 ]
Tan, Feng [2 ]
Zhang, Jianhua [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, CAS Wu Wen Tsun Key Lab Math, Hefei 230026, Anhui, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Infinite-dimensional random dynamical systems; Mean Li-Yorke chaos; Positive entropy; RELATIVE ENTROPY; FORMULA;
D O I
10.1016/j.jde.2024.05.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the mean Li-Yorke chaotic phenomenon along any infinite positive integer sequence for infinite-dimensional random dynamical systems. To be precise, we prove that if an injective continuous infinite-dimensional random dynamical system (X, phi) over an invertible ergodic Polish system (Omega, F, P, theta) admits a phi-invariant random compact set K with positive topological entropy, then given a positive integer sequence a = {a(i)}(i is an element of N) with lim(i ->+infinity)a(i) = +infinity, for P-a.s. omega is an element of Omega there exists an uncountable subset S(omega) subset of K(omega) and epsilon(omega) > 0 such that for any two distinct points x(1), x(2) is an element of S(omega), one has lim inf (N ->+infinity) 1/N Sigma(N)(i =1) d (phi(a(i),omega)x (1),phi(a(i),omega)x(2)) = 0, lim sup(N ->+infinity )1/N Sigma(N)(i =1)d (phi(a(i), omega)x(1), phi (a(i), omega)x(2)) > epsilon(omega), where d is a compatible complete metric on X . To overcome the difficulties arising in the infinitedimensional random dynamical systems, we use the regularity of measure to construct the expected measurable partitions and to decompose the distance function. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:548 / 575
页数:28
相关论文
共 50 条
  • [11] ON THE OSELEDETS-SPLITTING FOR INFINITE-DIMENSIONAL RANDOM DYNAMICAL SYSTEMS
    Lu, Kening
    Neamtu, Alexandra
    Schmalfuss, Bjoern
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (03): : 1219 - 1242
  • [12] Observing Infinite-dimensional Dynamical Systems
    Lin, Jessica
    Ott, William
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (04): : 1229 - 1243
  • [13] Mean Li-Yorke Chaos and Mean Sensitivity in Non-autonomous Discrete Systems
    Zongbin Yin
    Shengnan He
    Zhijing Chen
    Journal of Dynamical and Control Systems, 2023, 29 : 245 - 262
  • [14] Mean Li-Yorke Chaos and Mean Sensitivity in Non-autonomous Discrete Systems
    Yin, Zongbin
    He, Shengnan
    Chen, Zhijing
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (01) : 245 - 262
  • [15] INFINITE-DIMENSIONAL ALGEBRAS OF ANY LINEARIZATION SYSTEMS
    葛墨林
    Science China Mathematics, 1987, (03) : 279 - 287
  • [16] INFINITE-DIMENSIONAL ALGEBRAS OF ANY LINEARIZATION SYSTEMS
    GE, ML
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1987, 30 (03): : 279 - 287
  • [17] INFINITE-DIMENSIONAL ALGEBRAS OF ANY LINEARIZATION SYSTEMS
    葛墨林
    ScienceinChina,SerA., 1987, Ser.A.1987 (03) : 279 - 287
  • [18] ENTROPY, CHAOS AND WEAK HORSESHOE FOR INFINITE DIMENSIONAL RANDOM DYNAMICAL SYSTEMS
    Huang, W.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 281 - 281
  • [19] Synchronising hyperchaos in infinite-dimensional dynamical systems
    Tamasevicius, A
    Cenys, A
    Namajunas, A
    Mykolaitis, G
    CHAOS SOLITONS & FRACTALS, 1998, 9 (08) : 1403 - 1408
  • [20] Discretization of infinite-dimensional linear dynamical systems
    Bondarko, VA
    DIFFERENTIAL EQUATIONS, 1996, 32 (10) : 1309 - 1318