Double-Layer Hybrid-Label Identification Feature Selection for Multi-View Multi-Label Learning

被引:0
|
作者
Hao, Pingting [1 ,2 ]
Liu, Kunpeng [3 ]
Gao, Wanfu [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Jilin, Peoples R China
[2] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Jilin, Jilin, Peoples R China
[3] Portland State Univ, Dept Comp Sci, Portland, OR 97201 USA
基金
中国博士后科学基金;
关键词
MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view multi-label feature selection aims to select informative features where the data are collected from multiple sources with multiple interdependent class labels. For fully exploiting multi-view information, most prior works mainly focus on the common part in the ideal circumstance. However, the inconsistent part hidden in each view, including noises and specific elements, may affect the quality of mapping between labels and feature representations. Meanwhile, ignoring the specific part might lead to a suboptimal result, as each label is supposed to possess specific characteristics of its own. To deal with the double problems in multi-view multi-label feature selection, we propose a unified loss function which is a totally splitting structure for observed labels as hybrid labels that is, common labels, view-to-all specific labels and noisy labels, and the view-to-all specific labels further splits into several specific labels of each view. The proposed method simultaneously considers the consistency and complementarity of different views. Through exploring the feature weights of hybrid labels, the mapping relationships between labels and features can be established sequentially based on their attributes. Additionally, the interrelatedness among hybrid labels is also investigated and injected into the function. Specific to the specific labels of each view, we construct the novel regularization paradigm incorporating logic operations. Finally, the convergence of the result is proved after applying the multiplicative update rules. Experiments on six datasets demonstrate the effectiveness and superiority of our method compared with the state-of-the-art methods.
引用
收藏
页码:12295 / 12303
页数:9
相关论文
共 50 条
  • [41] Consistent and specific multi-view multi-label learning with correlation information
    Li, Yiting
    Zhang, Jia
    Wu, Hanrui
    Du, Guodong
    Long, Jinyi
    INFORMATION SCIENCES, 2025, 687
  • [42] A Reconstruction Error Based Framework for Multi-Label and Multi-View Learning
    Qian, Buyue
    Wang, Xiang
    Ye, Jieping
    Davidson, Ian
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (03) : 594 - 607
  • [43] Multi-view multi-label active learning with conditional Bernoulli mixtures
    Zhao, Jing
    Qiu, Zengyu
    Sun, Shiliang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (06) : 1589 - 1601
  • [44] Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels
    He, Zhi-Fen
    Zhang, Chun-Hua
    Liu, Bin
    Li, Bo
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9444 - 9462
  • [45] Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels
    Zhi-Fen He
    Chun-Hua Zhang
    Bin Liu
    Bo Li
    Applied Intelligence, 2023, 53 : 9444 - 9462
  • [46] Music Emotion Recognition by Multi-label Multi-layer Multi-instance Multi-view Learning
    Wu, Bin
    Zhong, Erheng
    Horner, Andrew
    Yang, Qiang
    PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 117 - 126
  • [47] Sparse Matrix Feature Selection in Multi-label Learning
    Yang, Wenyuan
    Zhou, Bufang
    Zhu, William
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, RSFDGRC 2015, 2015, 9437 : 332 - 339
  • [48] Feature selection for multi-label learning with missing labels
    Chenxi Wang
    Yaojin Lin
    Jinghua Liu
    Applied Intelligence, 2019, 49 : 3027 - 3042
  • [49] Multi-label Feature Selection with Adaptive Subspace Learning
    Yuan, Dongjie
    Yuan, Bin
    Zhong, Yan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2024, 2024, 14884 : 148 - 160
  • [50] Alignment Based Feature Selection for Multi-label Learning
    Linlin Chen
    Degang Chen
    Neural Processing Letters, 2019, 50 : 2323 - 2344