Double-Layer Hybrid-Label Identification Feature Selection for Multi-View Multi-Label Learning

被引:0
|
作者
Hao, Pingting [1 ,2 ]
Liu, Kunpeng [3 ]
Gao, Wanfu [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Jilin, Peoples R China
[2] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Jilin, Jilin, Peoples R China
[3] Portland State Univ, Dept Comp Sci, Portland, OR 97201 USA
基金
中国博士后科学基金;
关键词
MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view multi-label feature selection aims to select informative features where the data are collected from multiple sources with multiple interdependent class labels. For fully exploiting multi-view information, most prior works mainly focus on the common part in the ideal circumstance. However, the inconsistent part hidden in each view, including noises and specific elements, may affect the quality of mapping between labels and feature representations. Meanwhile, ignoring the specific part might lead to a suboptimal result, as each label is supposed to possess specific characteristics of its own. To deal with the double problems in multi-view multi-label feature selection, we propose a unified loss function which is a totally splitting structure for observed labels as hybrid labels that is, common labels, view-to-all specific labels and noisy labels, and the view-to-all specific labels further splits into several specific labels of each view. The proposed method simultaneously considers the consistency and complementarity of different views. Through exploring the feature weights of hybrid labels, the mapping relationships between labels and features can be established sequentially based on their attributes. Additionally, the interrelatedness among hybrid labels is also investigated and injected into the function. Specific to the specific labels of each view, we construct the novel regularization paradigm incorporating logic operations. Finally, the convergence of the result is proved after applying the multiplicative update rules. Experiments on six datasets demonstrate the effectiveness and superiority of our method compared with the state-of-the-art methods.
引用
收藏
页码:12295 / 12303
页数:9
相关论文
共 50 条
  • [1] Embedded feature fusion for multi-view multi-label feature selection
    Hao, Pingting
    Gao, Wanfu
    Hu, Liang
    PATTERN RECOGNITION, 2025, 157
  • [2] Multi-View Multi-Label Learning With Sparse Feature Selection for Image Annotation
    Zhang, Yongshan
    Wu, Jia
    Cai, Zhihua
    Yu, Philip S.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2844 - 2857
  • [3] Exploring view-specific label relationships for multi-view multi-label feature selection
    Hao, Pingting
    Ding, Weiping
    Gao, Wanfu
    He, Jialong
    INFORMATION SCIENCES, 2024, 681
  • [4] Multi-view multi-label learning with view feature attention allocation
    Cheng, Yusheng
    Li, Qingyan
    Wang, Yibin
    Zheng, Weijie
    NEUROCOMPUTING, 2022, 501 : 857 - 874
  • [5] Feature relevance and redundancy coefficients for multi-view multi-label feature selection
    Han, Qingqi
    Hu, Liang
    Gao, Wanfu
    INFORMATION SCIENCES, 2024, 652
  • [6] Multi-View Multi-Label Learning With View-Label-Specific Features
    Huang, Jun
    Qu, Xiwen
    Li, Guorong
    Qin, Feng
    Zheng, Xiao
    Huang, Qingming
    IEEE ACCESS, 2019, 7 : 100979 - 100992
  • [7] Multi-view multi-label learning with double orders manifold preserving
    Yin, Jun
    Zhang, Wentao
    APPLIED INTELLIGENCE, 2023, 53 (12) : 14703 - 14716
  • [8] Multi-view multi-label learning with double orders manifold preserving
    Jun Yin
    Wentao Zhang
    Applied Intelligence, 2023, 53 : 14703 - 14716
  • [9] Tensor based Multi-View Label Enhancement for Multi-Label Learning
    Zhang, Fangwen
    Jia, Xiuyi
    Li, Weiwei
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2369 - 2375
  • [10] Feature Selection for Multi-Label Learning
    Spolaor, Newton
    Monard, Maria Carolina
    Lee, Huei Diana
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 4401 - 4402