SOME EVALUATIONS OF INFINITE SERIES INVOLVING DIRICHLET TYPE PARAMETRIC HARMONIC NUMBERS

被引:1
|
作者
Rui, Hongyuan [1 ]
Xu, Ce [1 ]
Yin, Xiaobin [1 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
基金
中国国家自然科学基金;
关键词
General parametric digamma function; parametric linear Euler sums; contour integrations; residue computations; parametric harmonic numbers; Hurwitz zeta functions; EULER SUMS;
D O I
10.4134/BKMS.b230299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we formally introduce the notion of a general parametric digamma function Psi( -s; A, a) and we find the Laurent expansion of Psi( -s; A, a) at the integers and poles. Considering the contour integrations involving Psi( -s; A, a), we present some new identities for infinite series involving Dirichlet type parametric harmonic numbers by using the method of residue computation. Then applying these formulas obtained, we establish some explicit relations of parametric linear Euler sums and some special functions (e.g. trigonometric functions, digamma functions, Hurwitz zeta functions etc.). Moreover, some illustrative special cases as well as immediate consequences of the main results are also considered.
引用
收藏
页码:671 / 697
页数:27
相关论文
共 50 条
  • [21] On some congruences involving Domb numbers and harmonic numbers
    Mao, Guo-Shuai
    Wang, Jie
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (10) : 2179 - 2200
  • [22] On a congruence involving harmonic series and Bernoulli numbers
    Chern, Shane
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (08) : 1691 - 1712
  • [23] Series involving degenerate harmonic numbers and degenerate Stirling numbers
    Luo, Lingling
    Ma, Yuankui
    Kim, Taekyun
    Xu, Rongrong
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2024, 32 (01):
  • [24] Evaluations of sums involving odd harmonic numbers and binomial coefficients
    W. Zheng
    Y. Yang
    Analysis Mathematica, 2024, 50 : 323 - 334
  • [25] Evaluations of sums involving odd harmonic numbers and binomial coefficients
    Zheng, W.
    Yang, Y.
    ANALYSIS MATHEMATICA, 2024, 50 (01) : 1 - 30
  • [26] A NOTE ON CERTAIN INFINITE SERIES OF DIRICHLET TYPE
    Toyoizumi, Masao
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 12 (02): : 245 - 251
  • [27] INFINITE SERIES AROUND MULTINOMIAL COEFFICIENTS AND HARMONIC NUMBERS
    Chu, Wenchang
    KODAI MATHEMATICAL JOURNAL, 2023, 46 (02) : 115 - 144
  • [28] INFINITE SERIES WITH HARMONIC NUMBERS AND CENTRAL BINOMIAL COEFFICIENTS
    Chu, Wenchang
    Zheng, Deyin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (03) : 429 - 448
  • [29] BESSEL TYPE FUNCTIONS INVOLVING DIRICHLET SERIES
    DAS, AG
    LAHIRI, BK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1988, 19 (05): : 448 - 463
  • [30] Binomial Series Involving Harmonic-like Numbers
    Li, Chunli
    Chu, Wenchang
    AXIOMS, 2024, 13 (03)