SOME EVALUATIONS OF INFINITE SERIES INVOLVING DIRICHLET TYPE PARAMETRIC HARMONIC NUMBERS

被引:1
|
作者
Rui, Hongyuan [1 ]
Xu, Ce [1 ]
Yin, Xiaobin [1 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
基金
中国国家自然科学基金;
关键词
General parametric digamma function; parametric linear Euler sums; contour integrations; residue computations; parametric harmonic numbers; Hurwitz zeta functions; EULER SUMS;
D O I
10.4134/BKMS.b230299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we formally introduce the notion of a general parametric digamma function Psi( -s; A, a) and we find the Laurent expansion of Psi( -s; A, a) at the integers and poles. Considering the contour integrations involving Psi( -s; A, a), we present some new identities for infinite series involving Dirichlet type parametric harmonic numbers by using the method of residue computation. Then applying these formulas obtained, we establish some explicit relations of parametric linear Euler sums and some special functions (e.g. trigonometric functions, digamma functions, Hurwitz zeta functions etc.). Moreover, some illustrative special cases as well as immediate consequences of the main results are also considered.
引用
收藏
页码:671 / 697
页数:27
相关论文
共 50 条