Concentration limit for non-local dissipative convection-diffusion kernels on the hyperbolic space

被引:0
|
作者
Gonzalez, Maria del Mar [1 ,2 ]
Ignat, Liviu I. [3 ,4 ]
Manea, Dragons [3 ,4 ]
Moroianu, Sergiu [3 ,5 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[2] ICMAT, Madrid 28049, Spain
[3] Romanian Acad, Inst Math Sim Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
[4] Univ Bucharest, Res Inst Univ Bucharest ICUB, 90-92 Sos Panduri,5th Dist, Bucharest, Romania
[5] Univ Bucuresti, Fac Matemat, Str Acad 14, Bucharest, Romania
关键词
Non-local convection-diffusion; Dissipative kernels; Hyperbolic space; Convergence of non-local equations to local equations; Functions invariant to Riemannian geodesic flow; HEAT KERNEL; EQUATION;
D O I
10.1016/j.na.2024.113618
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a non-local evolution equation on the hyperbolic space H N . We first consider a model for particle transport governed by a non-local interaction kernel defined on the tangent bundle and invariant under the geodesic flow. We study the relaxation limit of this model to a local transport problem, as the kernel gets concentrated near the origin of each tangent space. Under some regularity and integrability conditions on the kernel, we prove that the solution of the rescaled non-local problem converges to that of the local transport equation. Then, we construct a large class of interaction kernels that satisfy those conditions. We also consider a non-local, non-linear convection-diffusion equation on H N governed by two kernels, one for each of the diffusion and convection parts, and we prove that the solution converges to the solution of a local problem as the kernels get concentrated. We prove and then use in this sense a compactness tool on manifolds inspired by the work of Bourgain-Brezis-Mironescu.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] The dissipative non-local oscillator in resonance with a periodic excitation
    Maccari, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1996, 111 (10): : 1173 - 1186
  • [32] Viscous splitting approximation of mixed hyperbolic-parabolic convection-diffusion equations
    Evje, S
    Karlsen, KH
    NUMERISCHE MATHEMATIK, 1999, 83 (01) : 107 - 137
  • [33] Reaction, diffusion and non-local interaction
    Hirokazu Ninomiya
    Yoshitaro Tanaka
    Hiroko Yamamoto
    Journal of Mathematical Biology, 2017, 75 : 1203 - 1233
  • [34] Finite volume methods with local refinement for convection-diffusion problems
    Lazarov, R.D.
    Mishev, I.D.
    Vassilevski, P.S.
    Computing (Vienna/New York), 1994, 53 (01): : 33 - 57
  • [35] A hyperbolic model for convection-diffusion transport problems in CFD: Numerical analysis and applications
    Gomez, H.
    Colominas, I.
    Navarrina, F.
    Casteleiro, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2008, 102 (02) : 319 - 334
  • [36] Non-Local Scattering Kernel and the Hydrodynamic Limit
    Maria Carmela Lombardo
    Russel E. Caflisch
    Marco Sammartino
    Journal of Statistical Physics, 2008, 130 : 69 - 82
  • [37] Non-local scattering kernel and the hydrodynamic limit
    Lombardo, Maria Carmela
    Caflisch, Russel E.
    Sammartino, Marco
    JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (01) : 69 - 82
  • [38] Reaction, diffusion and non-local interaction
    Ninomiya, Hirokazu
    Tanaka, Yoshitaro
    Yamamoto, Hiroko
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 75 (05) : 1203 - 1233
  • [39] Superconvergence analysis of local discontinuous Galerkin methods for linear convection-diffusion equations in one space dimension
    Zhang, Jun
    Chen, Xiangling
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (01):
  • [40] Hyperbolic balance laws with a dissipative non local source
    Colombo, Rinaldo M.
    Guerra, Graziano
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (05) : 1077 - 1090