A deep neural network for predicting soil texture using airborne radiometric data

被引:0
|
作者
Maino, Andrea [1 ,2 ]
Alberi, Matteo [1 ,2 ]
Barbagli, Alessio [3 ]
Chiarelli, Enrico [1 ,2 ]
Colonna, Tommaso [3 ]
Franceschi, Michele [1 ,2 ]
Gallorini, Fabio [1 ,3 ]
Guastaldi, Enrico [1 ,3 ]
Lopane, Nicola [1 ,2 ,3 ]
Mantovani, Fabio [1 ,2 ]
Petrone, Dario [1 ,3 ]
Pierini, Silvio [3 ]
Raptis, Kassandra Giulia Cristina [1 ,2 ]
Strati, Virginia [1 ,2 ]
Xhixha, Gerti [4 ]
机构
[1] Univ Ferrara, Dept Phys & Earth Sci, I-44122 Ferrara, Italy
[2] INFN Ferrara Sect, I-44122 Ferrara, Italy
[3] GeoExplorer Impresa Sociale Srl, I-52100 Arezzo, Italy
[4] Univ Tirana, Fac Nat Sci, Dept Phys, Blv Zogu 1, Tirana 1001, Albania
关键词
Deep neural network; Hyperparameters optimization; Airborne gamma-ray spectroscopy; Soil texture mapping; Potassium; Thorium; GAMMA-RAY SPECTROSCOPY; CLASSIFICATION; SPECTROMETRY;
D O I
10.1016/j.radphyschem.2024.111767
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ternary nature of soil texture, defined by its proportions of clay, silt, and sand, makes it challenging to predict through linear regression models from other soil attributes and auxiliary variables. The most promising results in this field have been recently achieved by Machine Learning methods which are able to derive nonlinear, non -site -specific models to predict soil texture. In this paper we present a method of constructing a pair of Deep Neural Network (DNN) algorithms that can predict clay and sand soil contents from Airborne Gamma Ray Spectrometry data of K and Th ground abundances. We tested the algorithm ' s hyperparameters through various configurations to optimize the DNNs ' performance, effectively avoiding underfitting and overfitting of the models. This led to the creation of a highresolution 20 m x 20 m soil texture map from dense AGRS data, significantly refining the previous map ' s granularity. The application of the obtained DNN models to unseen sites can be supported by future training on additional textural classes.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] On the detailed mapping of peat (raised bogs) using airborne radiometric data
    Beamish, David
    White, James C.
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2024, 277
  • [42] Predicting airborne chloride deposition in marine bridge structures using an artificial neural network model
    Jeon, Dongho
    Jung, Jahe
    Park, Jisun
    Min, Jiyoung
    Oh, Jae Eun
    Moon, Juhyuk
    Lee, Jong-Suk
    Yoon, Seyoon
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 337
  • [43] Pilot study of the application of Tellus airborne radiometric and soil geochemical data for radon mapping
    Appleton, J. D.
    Miles, J. C. H.
    Green, B. M. R.
    Larmour, R.
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2008, 99 (10) : 1687 - 1697
  • [44] Periapical Radiograph Texture Features for Osteoporosis Detection using Deep Convolutional Neural Network
    Hidjah, Khasnur
    Harjoko, Agus
    Wibowo, Moh Edi
    Shantiningsih, Rurie Ratna
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (01) : 223 - 232
  • [45] Segmentation of Drilled Holes in Texture Wooden Furniture Panels Using Deep Neural Network
    Augustauskas, Rytis
    Lipnickas, Arunas
    Surgailis, Tadas
    SENSORS, 2021, 21 (11)
  • [46] Predicting formation lithology from log data by using a neural network
    Wang Kexiong
    Zhang Laibin
    PETROLEUM SCIENCE, 2008, 5 (03) : 242 - 246
  • [47] Predicting formation lithology from log data by using a neural network
    Wang Kexiong~(1*) Zhang Laibin~2 1 School of Petroleum Engineering
    Petroleum Science, 2008, (03) : 242 - 246
  • [48] An artificial neural network approach for predicting hypertension using NHANES data
    Lopez-Martinez, Fernando
    Rolando Nunez-Valdez, Edward
    Gonzalez Crespo, Ruben
    Garcia-Diaz, Vicente
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [49] Modeling and Predicting an Industrial Process Using a Neural Network and Automation Data
    Nykyri, Mikko
    Kuisma, Mikko
    Hallikas, Jukka
    Immonen, Mika
    Silventoinen, Pertti
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 505 - 509
  • [50] An Artificial Neural Network for Predicting Groundnut Yield Using Climatic Data
    Sajindra, Hirushan
    Abekoon, Thilina
    Wimalasiri, Eranga M.
    Mehta, Darshan
    Rathnayake, Upaka
    AGRIENGINEERING, 2023, 5 (04): : 1713 - 1736