Learning Statistics From Counterexamples

被引:1
|
作者
Berger, James [1 ]
机构
[1] Duke Univ, Durham, NC 27708 USA
来源
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY | 2024年 / 86卷 / SUPPL 1期
关键词
Horvitz-Thompson estimator; ancillarity; likelihood principle; stopping rule principle; conditioning; shrinkage estimation; Jeffreys-Lindley paradox; p-values and error rates; understanding p-values; underestimating variances in elicitation; difficulties with conjugate priors; Neyman-Scott problem; difficulties with the multivariate Jeffreys prior; empirical Bayes counterexample; justifying improper priors; multinomial counterexample; Bartlett counterexample; median probability model; epistemic and aleatoric probability; robust Bayesian analysis; imprecise probability; FOUNDATIONS; INFERENCE;
D O I
10.1007/s13171-024-00356-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The title of this article is (essentially) the same as the famous paper Basu (2011b). Basu often opined that counterexamples were the best way to learn limitations of theories or methods and I have followed his directive in my own teaching. A number of counterexamples I use extensively in teaching are collected here.
引用
收藏
页码:13 / 42
页数:30
相关论文
共 50 条
  • [41] Paradoxes and counterexamples in teaching and learning of probability at university
    Klymchuk, Sergiy
    Kachapova, Farida
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2012, 43 (06) : 803 - +
  • [42] Learning Deterministic Weighted Automata with Queries and Counterexamples
    Weiss, Gail
    Goldberg, Yoav
    Yahav, Eran
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [43] Refinement Of Reinforcement Learning Algorithms Guided By Counterexamples
    Gangopadhyay, Briti
    Vishnoi, Somi
    Dasgupta, Pallab
    2022 IEEE WOMEN IN TECHNOLOGY CONFERENCE (WINTECHCON): SMARTER TECHNOLOGIES FOR A SUSTAINABLE AND HYPER-CONNECTED WORLD, 2022,
  • [44] Loop Invariants from Counterexamples
    Greitschus, Marius
    Dietsch, Daniel
    Podelski, Andreas
    STATIC ANALYSIS (SAS 2017), 2017, 10422 : 128 - 147
  • [45] Saving safety from counterexamples
    Grundmann, Thomas
    SYNTHESE, 2020, 197 (12) : 5161 - 5185
  • [46] Dependent Types from Counterexamples
    Terauchi, Tachio
    POPL'10: PROCEEDINGS OF THE 37TH ANNUAL ACM SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES, 2010, : 119 - 130
  • [47] Dependent Types from Counterexamples
    Terauchi, Tachio
    ACM SIGPLAN NOTICES, 2010, 45 (01) : 119 - 130
  • [48] Saving safety from counterexamples
    Thomas Grundmann
    Synthese, 2020, 197 : 5161 - 5185
  • [49] Generating tests from counterexamples
    Beyer, D
    Chlipala, AJ
    Henzinger, TA
    Jhala, R
    Majumdar, R
    ICSE 2004: 26TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, PROCEEDINGS, 2004, : 326 - 335
  • [50] MINIMAL SUFFICIENT SIGMA-FIELDS AND MINIMAL SUFFICIENT STATISTICS - 2 COUNTEREXAMPLES
    LANDERS, D
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (06): : 2045 - 2049