Robust Integrative Analysis via Quantile Regression with and

被引:1
|
作者
Zeng, Hao [1 ]
Wan, Chuang [2 ]
Zhong, Wei [3 ,4 ]
Liu, Tuo [3 ,4 ]
机构
[1] Xiamen Univ, Paula & Gregory Chow Inst Studies Econ, Xiamen 361005, Fujian, Peoples R China
[2] Jinan Univ, Sch Econ, Dept Stat, Guangzhou 510632, Peoples R China
[3] Xiamen Univ, WISE, MOE Key Lab Econometr, Xiamen 361005, Fujian, Peoples R China
[4] Xiamen Univ, Dept Stat & Data Sci SOE, Xiamen 361005, Fujian, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
Homogeneity; Integrative analysis; Quantile regression; Robustness; Sparsity; NONCONCAVE PENALIZED LIKELIHOOD; TUNING PARAMETER SELECTION; CLIPPED ABSOLUTE DEVIATION; VARIABLE SELECTION; DIVERGING NUMBER; MODEL SELECTION; CRITERION; LASSO;
D O I
10.1016/j.jspi.2024.106196
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Integrative analysis plays a critical role in integrating heterogeneous data from multiple datasets to provide a comprehensive view of the overall data features. However, in multiple datasets, outliers and heavy -tailed data can render least squares estimation unreliable. In response, we propose a Robust Integrative Analysis via Quantile Regression (RIAQ) that accounts for homogeneity and sparsity in multiple datasets. The RIAQ approach is not only able to identify latent homogeneous coefficient structures but also recover the sparsity of high -dimensional covariates via double penalty terms. The integration of sample information across multiple datasets improves estimation efficiency, while a sparse model improves model interpretability. Furthermore, quantile regression allows the detection of subgroup structures under different quantile levels, providing a comprehensive picture of the relationship between response and high -dimensional covariates. We develop an efficient alternating direction method of multipliers (ADMM) algorithm to solve the optimization problem and study its convergence. We also derive the parameter selection consistency of the modified Bayesian information criterion. Numerical studies demonstrate that our proposed estimator has satisfactory finite -sample performance, especially in heavy -tailed cases.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Robust empirical likelihood for partially linear models via weighted composite quantile regression
    Peixin Zhao
    Xiaoshuang Zhou
    Computational Statistics, 2018, 33 : 659 - 674
  • [12] Robust empirical likelihood for partially linear models via weighted composite quantile regression
    Zhao, Peixin
    Zhou, Xiaoshuang
    COMPUTATIONAL STATISTICS, 2018, 33 (02) : 659 - 674
  • [13] Robust estimation for semiparametric spatial autoregressive models via weighted composite quantile regression
    Tang, Xinrong
    Zhao, Peixin
    Zhou, Xiaoshuang
    Zhang, Weijia
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [14] Conformalized Fairness via Quantile Regression
    Liu, Meichen
    Ding, Lei
    Yu, Dengdeng
    Liu, Wulong
    Kong, Linglong
    Jiang, Bei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [15] Quantile Regression via the EM Algorithm
    Zhou, Ying-Hui
    Ni, Zhong-Xin
    Li, Yong
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (10) : 2162 - 2172
  • [16] Quantile regression via an MM algorithm
    Hunter, DR
    Lange, K
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (01) : 60 - 77
  • [17] Robust quantile regression analysis for probabilistic modelling of S-N curves
    Zou, Qingrong
    Zhao, Jianxi
    Wen, Jici
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 167
  • [18] ROBUST REGRESSION VIA DISCRIMINANT-ANALYSIS
    ATKINSON, AC
    COX, DR
    BIOMETRIKA, 1977, 64 (01) : 15 - 19
  • [19] From regression rank scores to robust inference for censored quantile regression
    Sun, Yuan
    He, Xuming
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (04): : 1126 - 1149
  • [20] On multivariate quantile regression analysis
    Jean-Paul Chavas
    Statistical Methods & Applications, 2018, 27 : 365 - 384