Machine-Learning Based Prediction Model for Prognosis of IgA Nephropathy Patients

被引:0
|
作者
Park, Sehoon [1 ]
Koh, Eun Sil [6 ]
Baek, Chung Hee [5 ,6 ]
Kim, Yong Chul [1 ]
Lee, Jung Pyo [3 ]
Kim, Dong Ki [1 ]
Han, Seung Hyeok [4 ]
Chin, Ho Jun [2 ]
Joo, Kwon Wook [1 ]
Kim, Yon Su [1 ]
Lee, Hajeong [1 ]
机构
[1] Seoul Natl Univ Hosp, Seoul, South Korea
[2] Seoul Natl Univ, Bundang Hosp, Seoul, South Korea
[3] Seoul Natl Univ, Seoul Metropolitan Govt, Boramae Med Ctr, Seoul, South Korea
[4] Severance Hosp, Seoul, South Korea
[5] Asan Med Ctr, Seoul, South Korea
[6] Catholic Univ Korea, Sch Med, Seoul, South Korea
来源
关键词
D O I
暂无
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
SA-PO716
引用
收藏
页码:800 / 801
页数:2
相关论文
共 50 条
  • [41] Machine-learning based VMAF prediction for HDR video content
    Mueller, Christoph
    Steglich, Stephan
    Gross, Sandra
    Kremer, Paul
    PROCEEDINGS OF THE 2023 PROCEEDINGS OF THE 14TH ACM MULTIMEDIA SYSTEMS CONFERENCE, MMSYS 2023, 2023, : 328 - 332
  • [42] Prediction of Prognosis in Patients with Trauma by Using Machine Learning
    Lee, Kuo-Chang
    Hsu, Chien-Chin
    Lin, Tzu-Chieh
    Chiang, Hsiu-Fen
    Horng, Gwo-Jiun
    Chen, Kuo-Tai
    MEDICINA-LITHUANIA, 2022, 58 (10):
  • [43] Urinary Biomarkers in the Prediction of Prognosis and Treatment Response in IgA Nephropathy
    Neuhaus, Julia
    Bauer, Frederic
    Fitzner, Christina
    Hilgers, Ralf-Dieter
    Seibert, Felix
    Babel, Nina
    Doevelaar, Adrian
    Eitner, Frank
    Floege, Juergen
    Rauen, Thomas
    Westhoff, Timm H.
    KIDNEY & BLOOD PRESSURE RESEARCH, 2018, 43 (05): : 1563 - 1572
  • [44] Machine Learning-Based Multimodal Prediction of Prognosis in Patients with Intrahepatic Cholangiocarcinoma
    Nasar, Naaz
    McIntyre, Sarah
    Ducret, Valerie
    Sauty, Benoit
    Maussion, Charles
    Schmauch, Benoit
    Brion, Eliott
    Do, Richard K. G.
    Jarnagin, William R.
    Chakraborty, Jayasree
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2024, 239 (05) : S284 - S285
  • [45] Machine-learning-based identification of patients with IgA nephropathy using a computerized medical billing database
    Tsunoda, Ryoya
    Kume, Keitaro
    Kagawa, Rina
    Sanuki, Masaru
    Kitagawa, Hiroyuki
    Mase, Kaori
    Yamagata, Kunihiro
    PLOS ONE, 2024, 19 (12):
  • [46] A machine-learning model for prediction of Acinetobacter baumannii hospital acquired infection
    Neuman, Ido
    Shvartser, Leonid
    Teppler, Shmuel
    Friedman, Yehoshua
    Levine, Jacob J.
    Kagan, Ilya
    Bishara, Jihad
    Kushinir, Shiri
    Singer, Pierre
    PLOS ONE, 2024, 19 (12):
  • [47] A novel machine-learning based prediction model for ship manoeuvring emissions by using bridge simulator
    Senol, Yunus Emre
    Seyhan, Alper
    OCEAN ENGINEERING, 2024, 291
  • [48] Credit-Risk Prediction Model Using Hybrid Deep - Machine-Learning Based Algorithms
    Melese, Tamiru
    Berhane, Tesfahun
    Mohammed, Abdu
    Walelgn, Assaye
    Scientific Programming, 2023, 2023
  • [49] Prediction of breath-holding spells based on electrocardiographic parameters using machine-learning model
    Khalilian, Mohammad Reza
    Tofighi, Saeed
    Attar, Elham Zohur
    Nikkhah, Ali
    Hajipour, Mahmoud
    Ghazavi, Mohammad
    Samimi, Sahar
    ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, 2024, 29 (01)
  • [50] A Hybrid Machine-Learning Model Based on Global and Local Learner Algorithms for Diabetes Mellitus Prediction
    Rufo, Derara Duba
    Debelee, Taye Girma
    Negera, Worku Gachena
    JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING, 2021, 54 : 65 - 88