A new diagnostic indicator for lithium-ion batteries via electrochemical impedance spectroscopy: Harnessing the highest frequency peak in distribution of relaxation times

被引:5
|
作者
Jung, Min Jae [1 ]
Lee, Sang-Gug [1 ]
Choi, Kyung-Sik [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Elect Engn, Seoul 01811, South Korea
关键词
Diagnosis; Distribution of relaxation times; Electrochemical impedance spectroscopy; Lithium-ion battery; State estimation; TEMPERATURE; STATE; HEALTH; DECONVOLUTION; RESISTANCE; DERIVATION; LIFE;
D O I
10.1016/j.jpowsour.2024.234743
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper proposes a new diagnostic indicator derived from the distribution of relaxation times (DRT) analysis of electrochemical impedance spectroscopy (EIS) data for lithium -ion battery state estimation. The indicator is the area of the peak occurring within the highest frequency region of the DRT spectrum, exhibiting correlation with battery internal temperature, state of charge (SOC), and state of health (SOH). By focusing EIS measurements on a narrow high -frequency range and preprocessing data before DRT conversion, the overall time for impedance measurement and DRT calculation is significantly reduced, enabling practical onboard implementation in battery management systems (BMSs). Experimental analysis validates the proposed indicator's effectiveness and trends under varying temperature, SOC, and SOH conditions. A case study compares the proposed DRT-based method with an existing intercept frequency -based approach for internal temperature estimation, demonstrating the DRT method's superior robustness in the presence of noise. This suggests the potential for accurate battery state monitoring in noisy operating environments like electric vehicles. The proposed methodology paves the way for integrating advanced EIS -based diagnostic tools into real-time BMSs for enhanced battery performance and safety.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Joint time-frequency physicochemical modeling and parameter sensitivity analysis on dynamic electrochemical impedance spectroscopy of lithium-ion batteries
    Chen, Hongkai
    Li, Zeyu
    JOURNAL OF POWER SOURCES, 2025, 626
  • [42] A new electrochemical impedance spectroscopy model of a high-power lithium-ion battery
    Zhu, J. G.
    Sun, Z. C.
    Wei, X. Z.
    Dai, H. F.
    RSC ADVANCES, 2014, 4 (57): : 29988 - 29998
  • [43] Quantitative analysis of cyclic aging of lithium-ion batteries using synchrotron tomography and electrochemical impedance spectroscopy
    Ridder, Alexander
    Prifling, Benedikt
    Hilger, Andre
    Osenberg, Markus
    Weber, Matthias
    Manke, Ingo
    Birke, Kai Peter
    Schmidt, Volker
    ELECTROCHIMICA ACTA, 2023, 444
  • [44] Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling
    Andre, D.
    Meiler, M.
    Steiner, K.
    Walz, H.
    Soczka-Guth, T.
    Sauer, D. U.
    JOURNAL OF POWER SOURCES, 2011, 196 (12) : 5349 - 5356
  • [45] State of Health Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy and Backpropagation Neural Network
    Zhang, Sihan
    Hosen, Md Sazzad
    Kalogiannis, Theodoros
    Van Mierlo, Joeri
    Berecibar, Maitane
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (03):
  • [46] Dataset on broadband electrochemical impedance spectroscopy of Lithium-Ion batteries for different values of the state-of-charge
    Buchicchio, Emanuele
    De Angelis, Alessio
    Santoni, Francesco
    Carbone, Paolo
    Bianconi, Francesco
    Smeraldi, Fabrizio
    DATA IN BRIEF, 2022, 45
  • [47] Convolutional autoencoder-based SOH estimation of lithium-ion batteries using electrochemical impedance spectroscopy
    Obregon, Josue
    Han, Yu-Ri
    Ho, Chang Won
    Mouraliraman, Devanadane
    Lee, Chang Woo
    Jung, Jae-Yoon
    JOURNAL OF ENERGY STORAGE, 2023, 60
  • [48] Investigation of the Solid Electrolyte Interphase Formation at Graphite Anodes in Lithium-Ion Batteries with Electrochemical Impedance Spectroscopy
    Steinhauer, Miriam
    Risse, Sebastian
    Wagner, Norbert
    Friedrich, K. Andreas
    ELECTROCHIMICA ACTA, 2017, 228 : 652 - 658
  • [49] Capacity Estimation of Lithium-Ion Batteries Using Electrochemical Impedance Spectroscopy and Optimized Extreme Learning Machine
    Wu, Ji
    Luo, Lei
    Meng, Jinhao
    Lin, Mingqiang
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 1758 - 1763
  • [50] On the use of electrochemical impedance spectroscopy to characterize and model the aging phenomena of lithium-ion batteries: a critical review
    Iurilli, Pietro
    Brivio, Claudio
    Wood, Vanessa
    JOURNAL OF POWER SOURCES, 2021, 505