Critical Exponents and Universality for Fractal Time Processes above the Upper Critical Dimensionality

被引:0
|
作者
Zeng, Shaolong [1 ,2 ]
Hu, Yangfan [1 ,2 ]
Tan, Shijing [3 ]
Wang, Biao [1 ,2 ]
机构
[1] Dongguan Univ Technol, Res Inst Interdisciplinary Sci, Dongguan 523808, Peoples R China
[2] Dongguan Univ Technol, Sch Mat Sci & Engn, Dongguan 523808, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
关键词
critical phenomena; fractal time process; upper critical dimension; critical exponents; Landau-Ginzburg model;
D O I
10.3390/fractalfract8050294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the critical behaviors of systems undergoing fractal time processes above the upper critical dimension. We derive a set of novel critical exponents, irrespective of the order of the fractional time derivative or the particular form of interaction in the Hamiltonian. For fractal time processes, we not only discover new universality classes with a dimensional constant but also decompose the dangerous irrelevant variables to obtain corrections for critical dynamic behavior and static critical properties. This contrasts with the traditional theory of critical phenomena, which posits that static critical exponents are unrelated to the dynamical processes. Simulations of the Landau-Ginzburg model for fractal time processes and the Ising model with temporal long-range interactions both show good agreement with our set of critical exponents, verifying its universality. The discovery of this new universality class provides a method for examining whether a system is undergoing a fractal time process near the critical point.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Critical exponents near a random fractal boundary
    Cardy, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (16): : L177 - L182
  • [22] UNIVERSALITY OF CRITICAL SCREENING IN THE FORMATION OF FRACTAL PATTERNS
    KAUFMAN, JH
    DIMINO, GM
    MEAKIN, P
    PHYSICA A, 1989, 157 (02): : 656 - 668
  • [23] FRACTAL DIMENSION AND GRAND UNIVERSALITY OF CRITICAL PHENOMENA
    FAMILY, F
    JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (5-6) : 881 - 896
  • [24] CRITICAL EXPONENTS IN 2 DIMENSIONS FOR LARGE SPIN DIMENSIONALITY
    AHARONY, A
    IMRY, Y
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (03): : 306 - 306
  • [25] AN ESTIMATE OF THE DEPENDENCE OF THE ISING CRITICAL EXPONENTS ON THE LATTICE DIMENSIONALITY
    SILVA, PR
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1991, 167 (01): : 265 - 270
  • [26] CRITICAL PROCESSES, LANGEVIN EQUATION AND UNIVERSALITY
    ZHANG, SD
    FAN, QL
    DING, EJ
    PHYSICS LETTERS A, 1995, 203 (2-3) : 83 - 87
  • [27] UNIVERSALITY OF CRITICAL-POINT EXPONENTS WITH RESPECT TO LATTICE ANISOTROPY
    PAUL, G
    STANLEY, HE
    PHYSICS LETTERS A, 1971, A 37 (04) : 347 - &
  • [28] On the issue of universality of critical exponents in the quantum Hall effect mode
    Arapov, Yu. G.
    Gudina, S. V.
    Deryushkina, E. V.
    Shelushinina, N. G.
    Yakunin, M. V.
    LOW TEMPERATURE PHYSICS, 2019, 45 (02) : 181 - 188
  • [29] CRITICAL EXPONENTS AND UNIVERSALITY IN PINNED CHARGE-DENSITY WAVES
    CELINO, M
    CORBERI, F
    PHYSICA A, 1992, 184 (3-4): : 477 - 492
  • [30] On the issue of critical exponents universality in the quantum Hall effect regime
    Arapov, Yu.G.
    Gudina, S.V.
    Deryushkina, E.V.
    Shelushinina, N.G.
    Yakunin, M.V.
    Fizika Nizkikh Temperatur, 2019, 45 (02): : 210 - 218