Dependence of Zel'dovich number on pressure and temperature in lean hydrogen-air mixtures

被引:0
|
作者
Mousavi, Seyed Morteza [1 ]
Lipatnikov, Andrei N. [1 ]
机构
[1] Chalmers Univ Technol, Dept Mech & Maritime Sci, Div Energy Convers & Prop Syst ECaPS, SE-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Premixed combustion; Zel'dovich number; Laminar flame simulations; Elevated pressures and temperatures; LIMIT; PROPAGATION; FLAMES;
D O I
10.1016/j.proci.2024.105501
中图分类号
O414.1 [热力学];
学科分类号
摘要
Simulations of unperturbed lean hydrogen-air flames were performed using three state-of-the-art chemical mechanisms under various conditions: pressure 1 <= P <= 50 atm, unburned gas temperature 300 <= Tu <= 900 K, and the equivalence ratio 0.3 <= Phi <= 0.5. Multicomponent diffusion and Soret effect were considered. The computed results show that, under certain conditions, (i) differently defined Zel'dovich numbers decrease with increasing P and (ii) sensitivity coefficients of Ze to the rates of the most important chain-branching reaction (R1) H + O2--OH+O and chain-terminating reaction (R9) H + O2+M=HO2+M change their signs from negative and positive, respectively, to positive and negative, respectively, at high P. Analysis of the computed data shows that this transition occurs when the rates of the chain-terminating reaction (R14) 2HO2--H2O2+O2 and the chainbranching reaction (R15) H2O2+M = 2OH+M are almost equal. Under such conditions, these two rates are much higher than a rate of another reaction that involves H2O2 in the largest parts of flame reaction zones. Moreover, in the vicinity of the upstream boundaries of the reaction zones, these two rates are significantly higher than a rate of another bimolecular reaction that involves HO2. Accordingly, in such a flame zone, whose location controls Zel'dovich number, almost all H2O2 formed in reaction (R14) is immediately converted to two radicals OH via reaction (R15). Therefore, the entire root of reactions (R9)->(R14)->(R15) becomes chainpropagating root, with its rate being significantly increased by P, because reactions (R9) and (R15) are termolecular ones. The emphasized effects are mitigated by both Tuand Phi, i.e., they are observed at higher pressure if Tuor Phi is increased. The explored negative pressure-dependence of Zel'dovich number should be considered when analyzing experimental or numerical data obtained from lean hydrogen-air turbulent flames under elevated pressures or when modeling such flames.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Pathway dynamics to double-cell premixed flames in lean hydrogen-air mixtures
    Dominguez-Gonzalez, Alba
    Encinar, Miguel P.
    Martinez-Ruiz, Daniel
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [32] Self-similar propagation of spherically expanding flames in lean hydrogen-air mixtures
    Kim, Wookyung
    Namba, Takumi
    Johzaki, Tomoyuki
    Endo, Takuma
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (46) : 25608 - 25614
  • [33] Experimental investigation on the vented flame and pressure behaviour of hydrogen-air mixtures
    Sheng, Yuhuai
    Luo, Zhenmin
    Liu, Litao
    Yang, Zhe
    Meng, Fan
    Dong, Zhe
    Zhang, Yanni
    Qu, Jiao
    Deng, Jun
    Wang, Tao
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2024, 92
  • [34] Effects of temperature and time of exposure on the flammability limits of hydrogen-air mixtures
    Wierzba, I
    Ale, BB
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1998, 23 (12) : 1197 - 1202
  • [35] Lewis number and preferential diffusion effects in lean hydrogen-air highly turbulent flames
    Lee, Hsu Chew
    Dai, Peng
    Wan, Minping
    Lipatnikov, Andrei N.
    PHYSICS OF FLUIDS, 2022, 34 (03)
  • [36] Explosion venting hazards of temperature effects and pressure characteristics for premixed hydrogen-air mixtures in a spherical container
    Cao, Weiguo
    Li, Wenjuan
    Yu, Shuo
    Zhang, Yun
    Shu, Chi-Min
    Liu, Yifei
    Luo, Jingwen
    Bu, Lingtao
    Tan, Yingxin
    FUEL, 2021, 290
  • [37] On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures
    Bouvet, Nicolas
    Halter, Fabien
    Chauveau, Christian
    Yoon, Youngbin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) : 5949 - 5960
  • [38] Influence of initial pressure and temperature on flammability limits of hydrogen-air
    Liu, Xueling
    Zhang, Qi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (12) : 6774 - 6782
  • [39] Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure
    Weinrotter, M
    Kopecek, H
    Tesch, M
    Wintner, E
    Lackner, M
    Winter, F
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2005, 29 (05) : 569 - 577
  • [40] PARAMETERIZATION OF LAMINAR BURNING VELOCITY DEPENDENCE ON PRESSURE AND TEMPERATURE IN HYDROGEN/AIR/STEAM MIXTURES
    Szabo, T.
    Yanez, J.
    Kotchourko, A.
    Kuznetsov, M.
    Jordan, T.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2012, 184 (10-11) : 1427 - 1444