Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency

被引:1
|
作者
Zhao, Qian [1 ]
Zhang, Tengfei [1 ]
He, Bin [2 ,3 ]
Li, Zimu [1 ]
Zhang, Senfu [1 ]
Yu, Guoqiang [2 ,3 ]
Wang, Jianbo [1 ,4 ]
Liu, Qingfang [1 ]
Wei, Jinwu [1 ]
机构
[1] Lanzhou Univ, Key Lab Magnetism & Magnet Mat, Minist Educ, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Lanzhou Univ, Minist Educ, Key Lab Special Funct Mat & Struct Design, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
antiferromagnets; spin-orbit torque; exchange bias; spin torque ferromagnetic resonance; 85.75.-d; 75.50.Ee; 76.50.+g; POLARIZATION;
D O I
10.1088/1674-1056/ad2d55
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Antiferromagnet (AFM)/ferromagnet (FM) heterostructure is a popular system for studying the spin-orbit torque (SOT) of AFMs. However, the interfacial exchange bias field induces that the magnetization in FM layer is noncollinear to the external magnetic field, namely the magnetic moment drag effect, which further influences the characteristic of SOT efficiency. In this work, we study the SOT efficiencies of IrMn/NiFe bilayers with strong interfacial exchange bias by using spin-torque ferromagnetic resonance (ST-FMR) method. A full analysis on the AFM/FM systems with exchange bias is performed, and the angular dependence of magnetization on external magnetic field is determined through the minimum rule of free energy. The ST-FMR results can be well fitted by this model. We obtained the relative accurate SOT efficiency xi DL = 0.058 for the IrMn film. This work provides a useful method to analyze the angular dependence of ST-FMR results and facilitates the accurate measurement of SOT efficiency for the AFM/FM heterostructures with strong exchange bias.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Multilevel Spin-Orbit Torque MRAMs
    Kim, Yusung
    Fong, Xuanyao
    Kwon, Kon-Woo
    Chen, Mei-Chin
    Roy, Kaushik
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (02) : 561 - 568
  • [42] Intrinsic spin torque without spin-orbit coupling
    Kim, Kyoung-Whan
    Lee, Kyung-Jin
    Lee, Hyun-Woo
    Stiles, M. D.
    PHYSICAL REVIEW B, 2015, 92 (22)
  • [43] Detection of spin-orbit torque with spin rotation symmetry
    Wang, Tao
    Lendinez, Sergi
    Jungfleisch, M. Benjamin
    Kolodzey, James
    Xiao, John Q.
    Fan, Xin
    APPLIED PHYSICS LETTERS, 2020, 116 (01)
  • [44] Excitation and Amplification of Spin Waves by Spin-Orbit Torque
    Divinskiy, Boris
    Demidov, Vladislav E.
    Urazhdin, Sergei
    Freeman, Ryan
    Rinkevich, Anatoly B.
    Demokritov, Sergej O.
    ADVANCED MATERIALS, 2018, 30 (33)
  • [45] Theory of spin torque due to spin-orbit coupling
    Manchon, A.
    Zhang, S.
    PHYSICAL REVIEW B, 2009, 79 (09)
  • [46] Ferromagnetic material dependence of spin-orbit torque in PtMn/ferromagnet bilayer
    Pham, Ngoc Luu Ly
    Ko, Kyung-Hun
    Choi, Gyung-Min
    APPLIED PHYSICS LETTERS, 2023, 123 (16)
  • [47] Manipulation of the Topological Ferromagnetic State in a Weyl Semimetal by Spin-Orbit Torque
    Ren, Lizhu
    Liu, Liang
    Song, Xiaohe
    Zhao, Tieyang
    Xing, Xiangjun
    Feng, Yuan Ping
    Chen, Jingsheng
    Teo, Kie Leong
    NANO LETTERS, 2023, 23 (08) : 3394 - 3400
  • [48] Current driven spin-orbit torque oscillator: ferromagnetic and antiferromagnetic coupling
    Johansen, Oyvind
    Linder, Jacob
    SCIENTIFIC REPORTS, 2016, 6
  • [49] Synthetic Antiferromagnetic/Ferromagnetic Spin-Orbit Torque Devices with an Oxide Spacer
    Huang, Yu-Hsin
    Cheng, Chih-Wei
    Hsu, Ju
    Wu, Yu-Hui
    Lin, Yu-Lon
    Chang, Wen-Yueh
    Tseng, Yuan-Chieh
    2024 IEEE INTERNATIONAL MAGNETIC CONFERENCE-SHORT PAPERS, INTERMAG SHORT PAPERS, 2024,
  • [50] Anisotropy Dependent Spin-Orbit Torque Switching in Crystalline Ferromagnetic Semiconductor
    Jana, Apu Kumar
    Lee, Sanghoon
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (09) : 1 - 1