The zero-electron-mass limit of the bipolar non-isentropic Euler-Poisson system

被引:0
|
作者
Xi, Shuai [1 ,2 ]
Zhao, Liang [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[3] Oxford Suzhou Ctr Adv Res, Math Modelling & Data Analyt Ctr, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler-Poisson system; Zero -electron mass limit; Unipolar; Bipolar; HYDRODYNAMIC MODELS; HIERARCHY;
D O I
10.1016/j.jmaa.2024.128567
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the zero -electron -mass limit of the bipolar non-isentropic Euler-Poisson system. It is known that ions and electrons are relatively independent in plasmas so that they may have several temperatures at the same time. Moreover, since the velocity of the electrons is larger, so that the heat conductivity can be regarded as infinite. In this paper, we assume that the electrons are isothermal. The study of the convergence of this limit is based on the asymptotic analysis and we prove that the limiting process is actually decoupling and the limiting system is the unipolar non-isentropic Euler-Poisson system for ions. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Non-uniqueness of transonic shock solutions to non-isentropic Euler-Poisson system with varying background charges
    Zheng, Haoran
    Zou, Yongkui
    Zhang, Jianqiao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [32] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    JIANG Song
    LI FuCai
    ScienceChina(Mathematics), 2015, 58 (01) : 61 - 76
  • [33] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    Jiang Song
    Li FuCai
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 61 - 76
  • [34] LONG-TIME BEHAVIOR OF SOLUTIONS TO THE NON-ISENTROPIC EULER-POISSON SYSTEM IN R3
    Wu, Yunshun
    Tan, Zhong
    Wang, Yong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (07) : 1947 - 1965
  • [35] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    Song Jiang
    FuCai Li
    Science China Mathematics, 2015, 58 : 61 - 76
  • [36] Global convergence of a two-fluid non-isentropic Euler-Poisson system in one space dimension
    Huang, Yangshe
    Liu, Cunming
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (12)
  • [37] The well-posedness of shock solutions to non-isentropic Euler-Poisson system with varying background charges
    Duan, Ben
    Xing, Yuanyuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [38] The incompressible limit of the non-isentropic Euler equations
    Métivier, G
    Schochet, S
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (01) : 61 - 90
  • [39] The Incompressible Limit of the Non-Isentropic Euler Equations
    G. Métivier
    S. Schochet
    Archive for Rational Mechanics and Analysis, 2001, 158 : 61 - 90
  • [40] Quasi-neutral limit of the full bipolar Euler-Poisson system
    Jiang Song
    Ju QiangChang
    Li HaiLiang
    Li Yong
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3099 - 3114