4D-Former: Multimodal 4D Panoptic Segmentation

被引:0
|
作者
Athar, Ali [1 ,3 ]
Li, Enxu [1 ,2 ]
Casas, Sergio [1 ,2 ]
Urtasun, Raquel [1 ,2 ]
机构
[1] Waabi, Toronto, ON, Canada
[2] Univ Toronto, Toronto, ON M5S 1A1, Canada
[3] Rhein Westfal TH Aachen, Aachen, Germany
来源
关键词
Panoptic Segmentation; Sensor Fusion; Temporal Reasoning; Autonomous Driving;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
4D panoptic segmentation is a challenging but practically useful task that requires every point in a LiDAR point-cloud sequence to be assigned a semantic class label, and individual objects to be segmented and tracked over time. Existing approaches utilize only LiDAR inputs which convey limited information in regions with point sparsity. This problem can, however, be mitigated by utilizing RGB camera images which offer appearance-based information that can reinforce the geometry-based LiDAR features. Motivated by this, we propose 4D-Former: a novel method for 4D panoptic segmentation which leverages both LiDAR and image modalities, and predicts semantic masks as well as temporally consistent object masks for the input point-cloud sequence. We encode semantic classes and objects using a set of concise queries which absorb feature information from both data modalities. Additionally, we propose a learned mechanism to associate object tracks over time which reasons over both appearance and spatial location. We apply 4D-Former to the nuScenes and SemanticKITTI datasets where it achieves state-of-the-art results. For more information, visit the project website: https://waabi.ai/4dformer.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] MARKOVIAN METHOD FOR 2D, 3D AND 4D SEGMENTATION OF MRI
    Jodoin, Pierre-Marc
    Lalande, Alain
    Voisin, Yvon
    Bouchot, Olivier
    Steinmetz, Eric
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 3012 - 3015
  • [32] Cinema 4D targets designers - Cinema 4D 4.2.7
    Spohrer, R
    COMPUTER GRAPHICS WORLD, 1997, 20 (11) : 86 - 88
  • [33] Learning Temporal Variations for 4D Point Cloud Segmentation
    Shi, Hanyu
    Wei, Jiacheng
    Wang, Hao
    Liu, Fayao
    Lin, Guosheng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5603 - 5617
  • [34] SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds
    Shi, Hanyu
    Lin, Guosheng
    Wang, Hao
    Hung, Tzu-Yi
    Wang, Zhenhua
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4573 - 4582
  • [35] ROBUST CEREBROVASCULAR SEGMENTATION IN 4D ASL MRA IMAGES
    Phellan, Renzo
    Linder, Thomas
    Helle, Michael
    Falcao, Alexandre X.
    Forkert, Nils D.
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1348 - 1351
  • [36] Automatic cardiac 4D segmentation using level sets
    Fritscher, KD
    Pilgram, R
    Schubert, R
    FUNCTIONAL IMAGING AND MODELING OF HEART, PROCEEDINGS, 2005, 3504 : 113 - 122
  • [37] 4D Numerical Schemes for Cell Image Segmentation and Tracking
    Mikula, K.
    Peyrieras, N.
    Remesikova, M.
    Smisek, M.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 693 - +
  • [38] 4D Light Field Segmentation with Spatial and Angular Consistencies
    Mihara, Hajime
    Funatomi, Takuya
    Tanaka, Kenichiro
    Kubo, Hiroyuki
    Nagahara, Hajime
    Mukaigawa, Yasuhiro
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2016, : 54 - 61
  • [39] A 4D Lung Phantom for Coupled Registration/Segmentation Evaluation
    Markel, D.
    El Naqa, I.
    Levesque, I.
    MEDICAL PHYSICS, 2014, 41 (06) : 473 - 473
  • [40] SEGMENTATION OF 4D CT BONE IMAGES BY SEQUENTIAL REGISTRATION
    Van Dijck, Christophe
    Kerkhof, Faes
    Vereecke, Evie
    Wirix-Speetjens, Roel
    Vander Sloten, Jos
    2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015, : 621 - 624