Proton surface exchange kinetics of perovskite triple conducting thin films for protonic ceramic electrolysis cells: BaPr0.9Y0.1O3-δ (BPY) vs. Ba1-xCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY)

被引:1
|
作者
Lee, Jongmin [1 ,2 ]
Buckner, Haley B. [1 ,2 ]
Perry, Nicola H. [1 ,2 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA
关键词
CHEMICAL EXPANSION; HIGH-PERFORMANCE; FUEL-CELLS; STABILITY; COEFFICIENTS; SEGREGATION; CATHODE; STRAIN;
D O I
10.1039/d3ta07534f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Protonic ceramic electrolysis cells (PCECs) are an attractive green H-2 production technology, given their intermediate-temperature operating range and ability to produce dry H-2. However, PCECs will benefit from development of more efficient and durable "triple conducting" anodes where steam is split, H incorporated, and oxygen evolved. In this work, we evaluated the kinetics of the steam-splitting/H incorporation reaction on BaPr0.9Y0.1O3-delta (BPY) in comparison to the benchmark Ba1-xCo0.4Fe0.4Zr0.1Y0.1O3-delta (BCFZY) composition, replacing most of the transition metal elements (Co, Fe, Zr) with the lanthanide Pr. We prepared geometrically well-defined perovskite BPY and BCFZY thin films by pulsed laser deposition and performed simultaneous optical transmission relaxation and electrical conductivity relaxation measurements at 400-500 degrees C in 0.21 atm O-2 during switching of the steam partial pressure to isolate and compare their proton surface exchange coefficients (k). The k values of BPY were comparable to those of BCFZY and more stable over time. According to angle-resolved XPS and STEM-EDS mapping of FIB cross-sections, the surface of BPY exhibited Ba enrichment, Pr deficiency, and Si contamination. In contrast, BCFZY exhibited Ba deficiency throughout, no obvious surface segregation, and less Si contamination. The Ba segregation on the BPY film appears to have promoted steam splitting/H incorporation kinetics even though the more basic surface reacted with the acidic environmental SiOxHy. Faster kinetics observed on stoichiometric BCFZY vs. Ba-deficient BCFZY confirmed the benefit of a high A-site Ba concentration. This result contrasts with most work on perovskites applied in solid oxide electrolysis cell anodes, in which A-site segregation is considered deleterious for surface reaction kinetics.
引用
收藏
页码:15412 / 15429
页数:18
相关论文
共 50 条
  • [21] Pulsed laser deposition of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode for solid oxide fuel cells
    Ryu, Sangbong
    Lee, Sanghoon
    Jeong, Wonyeop
    Pandiyan, Arunkumar
    Moorthy, Suresh Babu Krishna
    Chang, Ikwhang
    Park, Taehyun
    Cha, Suk Won
    SURFACE & COATINGS TECHNOLOGY, 2019, 369 : 265 - 268
  • [22] Proton uptake kinetics and electromotive force in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode material with e-/O2-/H+ three mobile carriers for protonic ceramic fuel cells
    Wang, Piaopiao
    Xu, Dang
    Cheng, Jigui
    Hong, Tao
    IONICS, 2021, 27 (03) : 1185 - 1192
  • [23] Fluorination inductive effect enables rapid bulk proton diffusion in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite oxide for high-activity protonic ceramic fuel cell cathode
    Ren, Rongzheng
    Yu, Xiaodan
    Wang, Zhenhua
    Xu, Chunming
    Song, Tinglu
    Sun, Wang
    Qiao, Jinshuo
    Sun, Kening
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 317
  • [24] Investigate the proton uptake process of proton/oxygen ion/hole triple conductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ by electrical conductivity relaxation
    Chen, Yang
    Hong, Tao
    Wang, Piaopiao
    Brinkman, Kyle
    Tong, Jianhua
    Cheng, Jigui
    JOURNAL OF POWER SOURCES, 2019, 440
  • [25] Enhanced Electrochemical Performance and Durability of the BaCo0.4Fe0.4Zr0.1Y0.1O3-δ Composite Cathode of Protonic Ceramic Fuel Cells via Forming Nickel Oxide Nanoparticles
    Lee, Hyungjun
    Jung, Hoyeon
    Kim, Chanho
    Kim, Sungmin
    Jang, Inyoung
    Yoon, Heesung
    Paik, Ungyu
    Song, Taeseup
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (10) : 11564 - 11573
  • [26] Fluorination inductive effect enables rapid bulk proton diffusion in BaCo0.4Fe0.4Zr0.1Y0.1O3-d perovskite oxide for high-activity protonic ceramic fuel cell cathode
    Ren, Rongzheng
    Yu, Xiaodan
    Wang, Zhenhua
    Xu, Chunming
    Song, Tinglu
    Sun, Wang
    Qiao, Jinshuo
    Sun, Kening
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 317
  • [27] BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells
    Yu, Yingqin
    Yu, Lixiang
    Shao, Kang
    Li, Yihang
    Maliutina, Kristina
    Yuan, Wenxiang
    Wu, Qixing
    Fan, Liangdong
    CERAMICS INTERNATIONAL, 2020, 46 (08) : 11811 - 11818
  • [28] Enhanced electrolysis performance through hierarchical nanoparticle formation in the BaCo0.4Fe0.4Zr0.1Y0.1O3-s cathode materials system
    Meng, Yuqing
    Zheng, Hongkui
    Duffy, Jack
    Huang, Hua
    He, Kai
    Tong, Jianhua
    Brinkman, Kyle S.
    JOURNAL OF POWER SOURCES, 2023, 560
  • [29] Why do BaCo0.4Fe0.4Zr0.1Y0.1O3–δ-derived complex oxides become one of the most promising electrodes for protonic ceramic electrochemical cells? An explanatory review
    Tarutina, Liana R.
    Gordeeva, Maria A.
    Matkin, Danil E.
    Akopian, Mariam T.
    Starostin, George N.
    Kasyanova, Anna V.
    Tarutin, Artem P.
    Danilov, Nikolai A.
    Starostina, Inna A.
    Medvedev, Dmitry A.
    Shao, Zongping
    Chemical Engineering Journal, 2024, 490
  • [30] Why do BaCo0.4Fe0.4Zr0.1Y0.1O3-δ-derived complex oxides become one of the most promising electrodes for protonic ceramic electrochemical cells? An explanatory review
    Tarutina, Liana R.
    Gordeeva, Maria A.
    Matkin, Danil E.
    Akopian, Mariam T.
    Starostin, George N.
    Kasyanova, Anna V.
    Tarutin, Artem P.
    Danilov, Nikolai A.
    Starostina, Inna A.
    Medvedev, Dmitry A.
    Shao, Zongping
    CHEMICAL ENGINEERING JOURNAL, 2024, 490