Existence of solutions for Kirchhoff ff-double phase anisotropic variational problems with variable exponents

被引:0
|
作者
Ma, Wei [1 ,2 ]
Zhang, Qiongfen [1 ,2 ]
机构
[1] Guilin Univ Technol, Sch Math & Stat, Guangxi 541004, Peoples R China
[2] Guangxi Coll & Univ Key Lab Appl Stat, Guangxi 541004, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 09期
基金
中国国家自然科学基金;
关键词
double phase; Kirchhoff-type problem; variable exponent; Orlicz-Sobolev spaces; variational methods; MULTIPLE SOLUTIONS; P(X)-LAPLACIAN EQUATIONS; ELLIPTIC-EQUATIONS; REGULARITY; FUNCTIONALS; AMBROSETTI; CALCULUS; SPACES;
D O I
10.3934/math.20241137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to dealing with a kind of new Kirchhoff-type problem in R(N )that involves a general double-phase variable exponent elliptic operator Phi. Specifically, the operator Phi has behaviors like |tau|q((x)-2)tau if |tau| is small and like |tau|p((x)-2)tau if |tau| is large, where 1 < p(x) < q(x) < N. By applying some new analytical tricks, we first establish existence results of solutions for this kind of Kirchhoff-double-phase problem based on variational methods and critical point theory. In particular, we also replace the classical Ambrosetti-Rabinowitz type condition with four different superlinear conditions and weaken some of the assumptions in the previous related works. Our results generalize and improve the ones in [Q. H. Zhang, V. D. Radulescu, J. Math. Pures Appl., 118 (2018), 159-203.] and other related results in the literature.
引用
收藏
页码:23384 / 23409
页数:26
相关论文
共 50 条