Existence of solutions for Kirchhoff ff-double phase anisotropic variational problems with variable exponents

被引:0
|
作者
Ma, Wei [1 ,2 ]
Zhang, Qiongfen [1 ,2 ]
机构
[1] Guilin Univ Technol, Sch Math & Stat, Guangxi 541004, Peoples R China
[2] Guangxi Coll & Univ Key Lab Appl Stat, Guangxi 541004, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 09期
基金
中国国家自然科学基金;
关键词
double phase; Kirchhoff-type problem; variable exponent; Orlicz-Sobolev spaces; variational methods; MULTIPLE SOLUTIONS; P(X)-LAPLACIAN EQUATIONS; ELLIPTIC-EQUATIONS; REGULARITY; FUNCTIONALS; AMBROSETTI; CALCULUS; SPACES;
D O I
10.3934/math.20241137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to dealing with a kind of new Kirchhoff-type problem in R(N )that involves a general double-phase variable exponent elliptic operator Phi. Specifically, the operator Phi has behaviors like |tau|q((x)-2)tau if |tau| is small and like |tau|p((x)-2)tau if |tau| is large, where 1 < p(x) < q(x) < N. By applying some new analytical tricks, we first establish existence results of solutions for this kind of Kirchhoff-double-phase problem based on variational methods and critical point theory. In particular, we also replace the classical Ambrosetti-Rabinowitz type condition with four different superlinear conditions and weaken some of the assumptions in the previous related works. Our results generalize and improve the ones in [Q. H. Zhang, V. D. Radulescu, J. Math. Pures Appl., 118 (2018), 159-203.] and other related results in the literature.
引用
收藏
页码:23384 / 23409
页数:26
相关论文
共 50 条
  • [1] Infinitely many solutions to Kirchhoff double phase problems with variable exponents
    Ho, Ky
    Winkert, Patrick
    APPLIED MATHEMATICS LETTERS, 2023, 145
  • [2] Existence of weak solutions for double phase fractional problems with variable exponents
    Zuo, Jiabin
    Sousa, J. Vanterler da C.
    GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [3] Existence and Multiplicity of Solutions for a Class of Fractional Kirchhoff Type Problems with Variable Exponents
    Salah, M. Ben Mohamed
    Ghanmi, A.
    Kefi, K.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (02) : 253 - 268
  • [4] Existence of Solutions of Anisotropic Problems with Variable Exponents with Robin Boundary Conditions
    Hsini, M.
    Mbarki, L.
    Das, K.
    MATHEMATICAL NOTES, 2022, 112 (5-6) : 898 - 910
  • [5] Existence of Solutions of Anisotropic Problems with Variable Exponents with Robin Boundary Conditions
    M. Hsini
    L. Mbarki
    K. Das
    Mathematical Notes, 2022, 112 : 898 - 910
  • [6] Existence results for double phase obstacle problems with variable exponents
    Omar Benslimane
    Ahmed Aberqi
    Jaouad Bennouna
    Journal of Elliptic and Parabolic Equations, 2021, 7 : 875 - 890
  • [7] Existence results for double phase obstacle problems with variable exponents
    Benslimane, Omar
    Aberqi, Ahmed
    Bennouna, Jaouad
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (02) : 875 - 890
  • [8] Existence of nontrivial solutions to fractional Kirchhoff double phase problems
    Sousa, J. Vanterler da C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (02):
  • [9] Existence of nontrivial solutions to fractional Kirchhoff double phase problems
    J. Vanterler da C. Sousa
    Computational and Applied Mathematics, 2024, 43
  • [10] MULTIPLICITY RESULTS OF SOLUTIONS TO THE DOUBLE PHASE ANISOTROPIC VARIATIONAL PROBLEMS INVOLVING VARIABLE EXPONENT
    Cen, Jinxia
    Kim, Seong Jin
    Kim, Yun-Ho
    Zeng, Shengda
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2023, 28 (5-6) : 467 - 504