Anomaly Detection Using Smartphone Sensors for a Bullying Detection

被引:0
|
作者
Gattulli, Vincenzo [1 ]
Impedovo, Donato [1 ]
Sarcinella, Lucia [1 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Informat, I-70125 Bari, Italy
关键词
Anomaly Detection; Sensors; Smartphone; Bullying; Cyberbullying;
D O I
10.1007/978-3-031-45651-0_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly Detection is a fundamental process of detecting a situation different from the ordinary. The followingwork dealswith anomalies in the human behavioral domain while filling out a questionnaire about bullying and cyberbullying. In this work, data obtained from smartphones' sensors (accelerometer, magnetometer, and gyroscope) are analyzed to apply useful Anomaly Detection techniques to detect any abnormal behaviors adopted while filling out the questionnaire implemented in an Android application. Psychology and computer science are merged to analyze and detect any latent patterns within the data set under examination to understand any polarizing content proposed during the use of the app and identify users who exhibit anomalous behaviors, possibly common to classes of users.
引用
收藏
页码:330 / 340
页数:11
相关论文
共 50 条
  • [21] Crack detection and dimensional assessment using smartphone sensors and deep learning
    Tello-Gil, Carlos
    Jabari, Shabnam
    Waugh, Lloyd
    Masry, Mark
    McGinn, Jared
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2024, 51 (11) : 1197 - 1211
  • [22] A Novel Activity Detection System Using Plantar Pressure Sensors and Smartphone
    Kawsar, Ferdaus
    Hasan, Md Kamrul
    Love, Richard
    Ahamed, Sheikh Iqbal
    39TH ANNUAL IEEE COMPUTERS, SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC 2015), VOL 1, 2015, : 44 - 49
  • [23] Feature pyramid biLSTM: Using smartphone sensors for transportation mode detection
    Tang, Qinrui
    Cheng, Hao
    TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES, 2024, 26
  • [24] Anomalies Detection Through Smartphone Sensors: A Review
    Krichen, Moez
    IEEE SENSORS JOURNAL, 2021, 21 (06) : 7207 - 7217
  • [25] Personalized Travel Mode Detection with Smartphone Sensors
    Su, Xing
    Yao, Yuan
    He, Qing
    Lu, Jie
    Tong, Hanghang
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1341 - 1348
  • [26] Clustering-based Anomaly Detection for Smartphone Applications
    El Attar, Ali
    Khatoun, Rida
    Lemercier, Marc
    2014 IEEE NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (NOMS), 2014,
  • [27] Modular Anomaly Detection for Smartphone Ad Hoc Communication
    Cucurull, Jordi
    Nadjm-Tehrani, Simin
    Raciti, Massimiliano
    INFORMATION SECURITY TECHNOLOGY FOR APPLICATIONS, 2012, 7161 : 65 - 81
  • [28] Anomaly Detection Using Optimally Placed μPMU Sensors in Distribution Grids
    Jamei, Mahdi
    Scaglione, Anna
    Roberts, Ciaran
    Stewart, Emma
    Peisert, Sean
    McParland, Chuck
    McEachern, Alex
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (04) : 3611 - 3623
  • [29] Anomaly Detection for Civil Aviation Pilots Using Step-Sensors
    Yuan, Weiwei
    Zhou, Li
    Guan, Donghai
    Han, Guangjie
    Shu, Lei
    IEEE ACCESS, 2017, 5 : 11236 - 11243
  • [30] Human Activity Recognition for the Identification of Bullying and Cyberbullying Using Smartphone Sensors
    Gattulli, Vincenzo
    Impedovo, Donato
    Pirlo, Giuseppe
    Sarcinella, Lucia
    ELECTRONICS, 2023, 12 (02)