Robust DDoS attack detection with adaptive transfer learning

被引:2
|
作者
Anley, Mulualem Bitew [1 ]
Genovese, Angelo [1 ]
Agostinello, Davide [1 ]
Piuri, Vincenzo [1 ]
机构
[1] Univ Milan, Dept Comp Sci, Milan, Italy
关键词
Cyber security; Deep learning; Transfer learning; INTRUSION DETECTION;
D O I
10.1016/j.cose.2024.103962
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the evolving cybersecurity landscape, the rising frequency of Distributed Denial of Service (DDoS) attacks requires robust defense mechanisms to safeguard network infrastructure availability and integrity. Deep Learning (DL) models have emerged as a promising approach for DDoS attack detection and mitigation due to their capability of automatically learning feature representations and distinguishing complex patterns within network traffic data. However, the effectiveness of DL models in protecting against evolving attacks depends also on the design of adaptive architectures, through the combination of appropriate models, quality data, and thorough hyperparameter optimizations, which are scarcely performed in the literature. Also, within adaptive architectures for DDoS detection, no method has yet addressed how to transfer knowledge between different datasets to improve classification accuracy. In this paper, we propose an innovative approach for DDoS detection by leveraging Convolutional Neural Networks (CNN), adaptive architectures, and transfer learning techniques. Experimental results on publicly available datasets show that the proposed adaptive transfer learning method effectively identifies benign and malicious activities and specific attack categories.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Performance evaluation of Botnet DDoS attack detection using machine learning
    Tong Anh Tuan
    Hoang Viet Long
    Le Hoang Son
    Raghvendra Kumar
    Ishaani Priyadarshini
    Nguyen Thi Kim Son
    Evolutionary Intelligence, 2020, 13 : 283 - 294
  • [32] Security Assessment Framework for DDOS Attack Detection via Deep Learning
    Caroline Misbha, J.
    Raj, T. Ajith Bosco
    Jiji, G.
    IETE JOURNAL OF RESEARCH, 2024, : 8462 - 8475
  • [33] Recurrent and Deep Learning Neural Network Models for DDoS Attack Detection
    Sumathi, S.
    Rajesh, R.
    Lim, Sangsoon
    JOURNAL OF SENSORS, 2022, 2022
  • [34] Lucid: A Practical, Lightweight Deep Learning Solution for DDoS Attack Detection
    Doriguzzi-Corin, R.
    Millar, S.
    Scott-Hayward, S.
    Martinez-del-Rincon, J.
    Siracusa, D.
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (02): : 876 - 889
  • [35] DDoS Attack Detection on Bitcoin Ecosystem using Deep-Learning
    Baek, Ui-Jun
    Ji, Se-Hyun
    Park, Jee Tae
    Lee, Min-Seob
    Park, Jun-Sang
    Kim, Myung-Sup
    2019 20TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2019,
  • [36] Deep Ensemble Learning With Pruning for DDoS Attack Detection in IoT Networks
    Saiyedand, Makhduma F.
    Al-Anbagi, Irfan
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 596 - 616
  • [37] A Lightweight Model for DDoS Attack Detection Using Machine Learning Techniques
    Sadhwani, Sapna
    Manibalan, Baranidharan
    Muthalagu, Raja
    Pawar, Pranav
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [38] Classification Based Machine Learning for Detection of DDoS attack in Cloud Computing
    Mishra, Anupama
    Gupta, B. B.
    Perakovic, Dragan
    Garcia Penalvo, Francisco Jose
    Hsu, Ching-Hsien
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2021,
  • [39] FedDB: A Federated Learning Approach Using DBSCAN for DDoS Attack Detection
    Lee, Yi-Chen
    Chien, Wei-Che
    Chang, Yao-Chung
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [40] DLSDN: Deep Learning for DDOS attack detection in Software Defined Networking
    Ahuja, Nisha
    Singal, Gaurav
    Mukhopadhyay, Debajyoti
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 683 - 688