Towards ion stopping power experiments with the laser-driven LIGHT beamline

被引:0
|
作者
Nazary, H. [1 ]
Metternich, M. [2 ]
Schumacher, D. [2 ]
Neufeld, F. [1 ]
Grimm, S. J. [1 ]
Brabetz, C. [2 ]
Kroll, F. [3 ,4 ]
Brack, F. -E. [3 ,4 ]
Blazevic, A. [2 ,5 ]
Schramm, U. [3 ,4 ]
Bagnoud, V. [1 ,2 ,5 ]
Roth, M. [1 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, Schlossgartenstr 9, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
[4] TUD Dresden Univ Technol, D-01062 Dresden, Germany
[5] Helmholtz Inst Jena, Jena, Germany
关键词
intense particle beams; plasma applications; ENERGY-LOSS; HEAVY-IONS; KINETIC-EQUATION; PLASMA;
D O I
10.1017/S0022377824000576
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The main emphasis of the Laser Ion Generation, Handling and Transport (LIGHT) beamline at GSI Helmholtzzentrum f & uuml;r Schwerionenforschung GmbH are phase-space manipulations of laser-generated ion beams. In recent years, the LIGHT collaboration has successfully generated and focused intense proton bunches with an energy of 8 MeV and a temporal duration shorter than 1 ns (FWHM). An interesting area of application that exploits the short ion bunch properties of LIGHT is the study of ion-stopping power in plasmas, a key process in inertial confinement fusion for understanding energy deposition in dense plasmas. The most challenging regime is found when the projectile velocity closely approaches the thermal plasma electron velocity ($v_{i}\approx v_{e,\text {th}}$), for which existing theories show high discrepancies. Since conclusive experimental data are scarce in this regime, we plan to conduct experiments on laser-generated plasma probed with ions generated with LIGHT at a higher temporal resolution than previously achievable. The high temporal resolution is important because the parameters of laser-generated plasmas are changing on the nanosecond time scale. To meet this goal, our recent studies have dealt with ions of lower kinetic energies. In 2021, laser accelerated carbon ions were transported with two solenoids and focused temporally with LIGHT's radio frequency cavity. A bunch length of 1.2 ns (FWHM) at an energy of 0.6 MeV u$<^>{-1}$ was achieved. In 2022, protons with an energy of 0.6 MeV were transported and temporally compressed to a bunch length of 0.8 ns. The proton beam was used to measure the energy loss in a cold foil. Both the ion and proton beams will also be employed for energy loss measurements in a plasma target.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] TERMINAL VELOCITY OF A LASER-DRIVEN LIGHT SAIL
    MCINNES, CR
    BROWN, JC
    JOURNAL OF SPACECRAFT AND ROCKETS, 1990, 27 (01) : 48 - 52
  • [32] Beamline analysis for a laser-driven proton therapy accelerator using superconducting bends
    Li, Jie
    Wang, Kedong
    Easton, Matthew
    Huang, Wei
    Wang, Kai
    Cai, Shixian
    Zhu, Tingru
    Zhang, Caijie
    Jiang, Xiaopeng
    Liang, Yu
    Wu, Wei
    Lin, Chen
    Yan, Xueqing
    Zhu, Kun
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2025, 57 (03)
  • [33] Superintense Laser-driven Ion Beam Analysis
    Passoni, M.
    Fedeli, L.
    Mirani, F.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [34] MEASUREMENT OF ION TEMPERATURE IN LASER-DRIVEN FUSION
    SLIVINSKY, VW
    AHLSTROM, HG
    TIRSELL, KG
    LARSEN, J
    GLAROS, S
    ZIMMERMAN, G
    SHAY, H
    PHYSICAL REVIEW LETTERS, 1975, 35 (16) : 1083 - 1085
  • [35] Laser-driven production of the antihydrogen molecular ion
    Zammit, Mark C.
    Charlton, Michael
    Jonsell, Svante
    Colgan, James
    Savage, Jeremy S.
    Fursa, Dmitry, V
    Kadyrov, Alisher S.
    Bray, Igor
    Forrey, Robert C.
    Fontes, Christopher J.
    Leiding, Jeffery A.
    Kilcrease, David P.
    Hakel, Peter
    Timmermans, Eddy
    PHYSICAL REVIEW A, 2019, 100 (04)
  • [36] Laser-driven neutrons for time-of-flight experiments?
    Millan-Callado, M. A.
    Guerrero, C.
    Quesada, J. M.
    Gomez, J.
    Fernandez, B.
    Lerendegui-Marco, J.
    Rodriguez-Gonzalez, T.
    Domingo-Pardo, C.
    Tarifeno-Saldivia, A.
    Benlliure, J.
    Cortina, D.
    Martin, L.
    Penas, J.
    Cano-Ott, D.
    Martinez, T.
    ND 2019: INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, 2020, 239
  • [37] Simulations of material mixing in laser-driven reshock experiments
    Haines, Brian M.
    Grinstein, Fernando F.
    Welser-Sherrill, Leslie
    Fincke, James R.
    PHYSICS OF PLASMAS, 2013, 20 (02)
  • [38] Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments
    Dahui Wang
    Yinren Shou
    Pengjie Wang
    Jianbo Liu
    Zhusong Mei
    Zhengxuan Cao
    Jianmin Zhang
    Pengling Yang
    Guobin Feng
    Shiyou Chen
    Yanying Zhao
    Joerg Schreiber
    Wenjun Ma
    High Power Laser Science and Engineering, 2020, 8 (04) : 95 - 101
  • [39] Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments
    Wang, Dahui
    Shou, Yinren
    Wang, Pengjie
    Liu, Jianbo
    Mei, Zhusong
    Cao, Zhengxuan
    Zhang, Jianmin
    Yang, Pengling
    Feng, Guobin
    Chen, Shiyou
    Zhao, Yanying
    Schreiber, Joerg
    Ma, Wenjun
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2020, 8
  • [40] Laser-driven flyer impact experiments at the LULI 2000 laser facility
    Ozaki, N.
    Koenig, M.
    Benuzzi-Mounaix, A.
    Vinci, T.
    Ravasio, A.
    Esposito, M.
    Lepape, S.
    Henry, E.
    Huser, G.
    Tanaka, K. A.
    Nazarov, W.
    Nagai, K.
    Yoshida, M.
    JOURNAL DE PHYSIQUE IV, 2006, 133 : 1101 - 1105