Quantum extreme learning of molecular potential energy surfaces and force fields

被引:2
|
作者
Lo Monaco, Gabriele [1 ]
Bertini, Marco [1 ]
Lorenzo, Salvatore [1 ]
Palma, G. Massimo [1 ,2 ]
机构
[1] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, Via Archirafi 36, I-90123 Palermo, Italy
[2] Ist Nanosci, CNR, NEST, Piazza S Silvestro 12, I-56127 Pisa, Italy
来源
关键词
quantum extreme learning machine; quantum machine learning; quantum chemistry; computations on NISQ device; DYNAMICS;
D O I
10.1088/2632-2153/ad6120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum machine learning algorithms are expected to play a pivotal role in quantum chemistry simulations in the immediate future. One such key application is the training of a quantum neural network to learn the potential energy surface and force field of molecular systems. We address this task by using the quantum extreme learning machine paradigm. This particular supervised learning routine allows for resource-efficient training, consisting of a simple linear regression performed on a classical computer. We have tested a setup that can be used to study molecules of any dimension and is optimized for immediate use on NISQ devices with a limited number of native gates. We have applied this setup to three case studies: lithium hydride, water, and formamide, carrying out both noiseless simulations and actual implementation on IBM quantum hardware. Compared to other supervised learning routines, the proposed setup requires minimal quantum resources, making it feasible for direct implementation on quantum platforms, while still achieving a high level of predictive accuracy compared to simulations. Our encouraging results pave the way towards the future application to more complex molecules, being the proposed setup scalable.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Symmetry-invariant quantum machine learning force fields
    Le, Isabel Nha Minh
    Kiss, Oriel
    Schuhmacher, Julian
    Tavernelli, Ivano
    Tacchino, Francesco
    NEW JOURNAL OF PHYSICS, 2025, 27 (02):
  • [32] Advanced Potential Energy Surfaces for Molecular Simulation
    Albaugh, Alex
    Boateng, Henry A.
    Bradshaw, Richard T.
    Demerdash, Omar N.
    Dziedzic, Jacek
    Mao, Yuezhi
    Margul, Daniel T.
    Swails, Jason
    Zeng, Qiao
    Case, David A.
    Eastman, Peter
    Wang, Lee-Ping
    Essex, Jonathan W.
    Head-Gordon, Martin
    Pande, Vijay S.
    Ponder, Jay W.
    Shao, Yihan
    Skylaris, Chris-Kriton
    Todorov, Ilian T.
    Tuckerman, Mark E.
    Head-Gordon, Teresa
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (37): : 9811 - 9832
  • [33] MOLECULAR-POTENTIAL ENERGY SURFACES BY INTERPOLATION
    ISCHTWAN, J
    COLLINS, MA
    JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (11): : 8080 - 8088
  • [34] Simultaneous learning and exploring potential energy surfaces
    Shapeev, Alexander
    Podryabinkin, Evgeny
    Gubaev, Konstantin
    Novikov, Ivan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [35] Hierarchical machine learning of potential energy surfaces
    Dral, Pavlo O.
    Owens, Alec
    Dral, Alexey
    Csanyi, Gabor
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (20): : 204110
  • [36] Exploring Accurate Potential Energy Surfaces via Integrating Variational Quantum Eigensolver with Machine Learning
    Tao, Yanxian
    Zeng, Xiongzhi
    Fan, Yi
    Liu, Jie
    Li, Zhenyu
    Yang, Jinlong
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (28): : 6420 - 6426
  • [37] MOLECULAR FORCE FIELDS .15. THE POTENTIAL ENERGY FUNCTION AND RAMAN SPECTRUM OF BF3
    HESLOP, WR
    LINNETT, JW
    TRANSACTIONS OF THE FARADAY SOCIETY, 1953, 49 (11): : 1262 - 1273
  • [38] Energy conserving approximations to the quantum potential: Dynamics with linearized quantum force
    Garashchuk, S
    Rassolov, VA
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (03): : 1181 - 1190
  • [39] Nonadiabatic quantum dynamics without potential energy surfaces
    Albareda, Guillermo
    Kelly, Aaron
    Rubio, Angel
    PHYSICAL REVIEW MATERIALS, 2019, 3 (02):
  • [40] Quantum yields and potential energy surfaces: a theoretical study
    Nakamura, Shinichiro
    Kobayashi, Takao
    Takata, Atsushi
    Uchida, Kingo
    Asano, Yukako
    Murakami, Akinori
    Goldberg, Alexander
    Guillaumont, Dominique
    Yokojima, Satoshi
    Kobatake, Seiya
    Irie, Masahiro
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2007, 20 (11) : 821 - 829