P-wave polarity determination via ensemble deep learning models

被引:0
|
作者
Messuti, G. [1 ,2 ]
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, Fisciano, Italy
[2] INFN, Sez Napoli, Grp Collegato Salerno, Salerno, Italy
关键词
D O I
10.1393/ncc/i2024-24265-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
P-wave first-motion polarities play a central role in understanding earth dynamics. Manual or classical automated procedures for determining polarities face several challenges. To address these issues, recent advanced studies leverage deep learning techniques, particularly Convolutional Neural Networks (CNNs). This paper explores the efficacy of ensemble deep learning approach, combining predictions from multiple CNN models. Ensemble methods exhibit improved overall performance and enhanced capabilities in managing waveforms showing no polarity. Additionally, a specific augmentation procedure known as time-shift, enhances the ability to evaluate the uncertainty on noise-only waveforms.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] SEQUENCE OF RETROGRADE ATRIAL ACTIVATION IN HUMAN HEART - CORRELATION WITH P-WAVE POLARITY
    WALDO, AL
    MACLEAN, WAH
    KARP, RB
    FEDERATION PROCEEDINGS, 1975, 34 (03) : 391 - 391
  • [22] Comparison of P-wave attenuation models of wave-induced flow
    Sun, Weitao
    Ba, Jing
    Mueller, Tobias M.
    Carcione, Jose M.
    Cao, Hong
    GEOPHYSICAL PROSPECTING, 2015, 63 (02) : 378 - 390
  • [23] Correlation of p-wave polarity with underlying electrophysiologic mechanisms of long RP' tachycardia
    Ng, KS
    Lauer, MR
    Young, C
    Liem, LB
    Sung, RJ
    AMERICAN JOURNAL OF CARDIOLOGY, 1996, 77 (12): : 1129 - &
  • [24] SEQUENCE OF RETROGRADE ATRIAL ACTIVATION OF HUMAN HEART - CORRELATION WITH P-WAVE POLARITY
    WALDO, AL
    MACLEAN, WAH
    KARP, RB
    KOUCHOUKOS, NT
    JAMES, TN
    BRITISH HEART JOURNAL, 1977, 39 (06): : 634 - 640
  • [25] Intraoperative change in P-wave polarity, an accidental finding: Anaesthesiologist's dilemma
    Chhabra, Swati
    Singhal, S. K.
    EGYPTIAN JOURNAL OF ANAESTHESIA, 2015, 31 (02) : 197 - 198
  • [26] The CGAS Deep Learning Algorithm for P-Wave Arrival Time Picking of Mining Microseismic Events
    Luo, Hao
    Xu, Xiaozheng
    Pan, Yishan
    Yu, Jingkang
    Zhang, Yin
    Zhang, Li
    IEEE ACCESS, 2023, 11 : 102961 - 102970
  • [27] Accurate P-wave Arrival Detection via MODWT
    Hafez, Ali G.
    Kohda, T.
    2009 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES 2009), 2009, : 391 - 396
  • [28] DETERMINATION OF DYNAMIC SOURCE PARAMETERS FOR THE FIJI-TONGA DEEP EARTHQUAKES FROM P-WAVE SPECTRA
    KOGAN, SY
    POLIKARPOVA, LA
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ZEMLI, 1983, (07): : 34 - 48
  • [29] Deep-towed high resolution seismic imaging II: Determination of P-wave velocity distribution
    Marsset, B.
    Ker, S.
    Thomas, Y.
    Colin, F.
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2018, 132 : 29 - 36
  • [30] Deep transfer learning for P-wave arrival identification and automatic seismic source location in underground mines
    Yang, Xu
    Li, Sen
    Cao, Anye
    Wang, Changbin
    Liu, Yaoqi
    Bai, Xianxi
    Niu, Qiang
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2024, 182