Covalent organic framework membranes achieving Mg/Li separation by permeating Mg2+ while retaining Li+

被引:1
|
作者
Liu, Ming [1 ]
Wei, Mingjie [1 ]
Liu, Gan [1 ]
Li, Daiwen [1 ]
Zhang, Zhe [2 ]
Wang, Yong [1 ,3 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Sch Environm Sci & Engn, Nanjing 211816, Jiangsu, Peoples R China
[3] Southeast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic framework (COF); Desalination; Ion rejection; Hydrophilicity; Non-equilibrium molecular dynamics; simulation; LITHIUM; DESALINATION; PARAMETERS; ALGORITHMS; SALT;
D O I
10.1016/j.memsci.2024.123247
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Due to the growing demand for lithium in the new energy industry, significant attention has been focused on developing lithium extraction technologies from salt-lake brine. However, the high Mg/Li ratio in salt-lake brine presents challenges for membrane separation technology. If a membrane can allow Mg2+ and water molecules to pass through while retaining Li+, the retained brine will have concentrated Li+ with a reduced Mg/Li ratio, creating the facilitation of further lithium extraction. In this study, we discovered through non-equilibrium molecular dynamics simulations that strongly hydrophilic covalent organic frameworks membranes capture Li+ in their pores, preventing additional Li+ from entering the nanopores. Meanwhile, Mg2+ can freely penetrate these nanopores along with water molecules. This adsorption of Li+ and the free permeation of Mg2+ with water molecules result in the effective separation of Li+ and Mg2+. Consequently, the retained brine becomes lithium-rich with reduced Mg/Li ratio. The findings of this work provide valuable guidance for designing nanofiltration membranes for extracting lithium from salt lakes with high Mg/Li ratio.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt
    Xu, Yang
    Peng, Huawen
    Luo, Hao
    Zhang, Qi
    Liu, Zhitian
    Zhao, Qiang
    DESALINATION, 2022, 526
  • [32] Tuning composite nanofiltration membranes with γ-cyclodextrin for improved Mg2+/Li+ selectivity
    Li, Nan
    Zhang, Tiancan
    Xue, Weihao
    Zhao, Ying
    Zhu, Bo
    Pei, Xiaoyuan
    Xu, Zhiwei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330
  • [33] Positive charged PEI-TMC composite nanofiltration membrane for separation of Li + and Mg2+ from brine with high Mg2+/Li+ ratio
    Xu, Ping
    Wang, Wei
    Qian, Xiaoming
    Wang, Haibo
    Guo, Changsheng
    Li, Nan
    Xu, Zhiwei
    Teng, Kunyue
    Wang, Zhen
    DESALINATION, 2019, 449 : 57 - 68
  • [34] Guanidinium covalent organic framework modulated positively charged polyamide membranes toward superior Li+/Mg2+selectivity
    Zhang, Shiyu
    Gu, Tianrun
    Li, Zhichao
    Yuan, Jinqiu
    Yang, Chao
    Liu, Zaichuang
    Zheng, Yu
    Meng, Xiangxuan
    Yue, Xiaolin
    Liu, Qingyuan
    Wang, Hui
    Zhang, Runnan
    Jiang, Zhongyi
    JOURNAL OF MEMBRANE SCIENCE, 2025, 725
  • [35] A positively charged PI nanofiltration membrane with good separation for Li+ and Mg2+
    Bi, Qiuyan
    Xu, Shiai
    DESALINATION AND WATER TREATMENT, 2020, 198 : 98 - 107
  • [36] Dual-functional covalent organic framework engineered negatively charged nanofiltration membrane for Li+/Mg2+separation
    Liu, Zaichuang
    Zhang, Shiyu
    Yuan, Jialu
    Zhang, Zixuan
    Shi, Benbing
    Wu, Tao
    Hu, Bo
    Wang, Hui
    Zhang, Runnan
    Jiang, Zhongyi
    DESALINATION, 2025, 600
  • [38] DiaNanofiltration-based process for effective separation of Li+ from the high Mg2+/Li+ ratio aqueous solution
    Ashraf, Muhammad Awais
    Li, Xingchun
    Wang, Junfeng
    Guo, Shiwei
    Xu, Bao-Hua
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 247
  • [39] DiaNanofiltration-based process for effective separation of Li+ from the high Mg2+/Li+ ratio aqueous solution
    Awais Ashraf, Muhammad
    Li, Xingchun
    Wang, Junfeng
    Guo, Shiwei
    Xu, Bao-Hua
    Separation and Purification Technology, 2021, 247
  • [40] Competition between insertion of Li+ and Mg2+: An example of TiO2-B nanowires for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries
    Meng, Yuan
    Wang, Dashuai
    Wei, Yingjin
    Zhu, Kai
    Zhao, Yingying
    Bian, Xiaofei
    Du, Fei
    Liu, Bingbing
    Gao, Yu
    Chen, Gang
    JOURNAL OF POWER SOURCES, 2017, 346 : 134 - 142