The evolution of thermal runaway parameters of lithium-ion batteries under different abuse conditions: A review

被引:8
|
作者
Nie, Baisheng [1 ,2 ]
Dong, Yunshuo [1 ]
Chang, Li [1 ]
机构
[1] Chongqing Univ, Sch Resources & Safety Engn, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
[2] China Univ Min & Technol Bejing, Sch Emergency & Safety Engn, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Thermal runaway; Abuse conditions; Early warning; INTERNAL SHORT-CIRCUIT; ACCELERATING RATE CALORIMETRY; CATHODE MATERIALS; NAIL-PENETRATION; FAILURE-MECHANISM; ELECTRIC VEHICLES; IN-SITU; ELECTROCHEMICAL-BEHAVIOR; SCANNING CALORIMETRY; EXOTHERMIC REACTIONS;
D O I
10.1016/j.est.2024.112624
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal runaway of lithium-ion batteries (LIBs) remains a major concern in their large-scale applications. It has been a hot topic to understand the thermal runaway (TR) behavior of LIBs, with the goal of achieving early warning of TR. The key parameters of the battery undergo different evolutionary processes because of their different mechanisms under specific abuse methods. The aim of this study is to comprehensively summarize the TR response for various LIB applications and abuse types, and to identify the TR hazard by establishing critical parameter thresholds, which in turn can improve the effectiveness of response strategies. In-depth analysis of the response characteristics of main parameter types, such as temperature, voltage, gas production, and mechanical behavior, under three different abuse conditions, namely thermal, electrical, and mechanical abuse is presented. The paper examines and compares the key parameters and corresponding mechanisms of TR, focusing on their pre-thermal runaway warning thresholds and critical values. The state-of-art warning methods for the battery management system are reviewed. Suggestions for TR threshold settings are presented by incorporating essential pre-thermal runaway parameters into current monitoring methods. This work summarizes important parameter evolution characteristics for various LIBs under specific abuse conditions and can help reduce the potential risks associated with any TR incidents.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] A lumped electrochemical-thermal model for simulating detection and mitigation of thermal runaway in lithium-ion batteries under different ambient conditions
    Mishra, Saumendra Nath
    Sarkar, Sourav
    Mukhopadhyay, Achintya
    Sen, Swarnendu
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 53
  • [22] MODELING THERMAL RUNAWAY IN PRISMATIC LITHIUM-ION BATTERIES
    Khan, Shehzad
    Anwar, Sohail
    Casa, Jairo
    Hasnain, Muhammad
    Ahmed, Hossain
    Sezer, Hayri
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 10, 2023,
  • [23] A model for the prediction of thermal runaway in lithium-ion batteries
    Azuaje-Berbeci, Bernardo J.
    Ertan, H. Bulent
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [24] Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries
    McKerracher, Rachel D.
    Guzman-Guemez, Jorge
    Wills, Richard G. A.
    Sharkh, Suleiman M.
    Kramer, Denis
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [25] Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions
    Kong, Depeng
    Wang, Gongquan
    Ping, Ping
    Wen, Jenifer
    APPLIED THERMAL ENGINEERING, 2021, 189
  • [26] Effect of Thermal Abuse Conditions on Thermal Runaway of NCA 18650 Cylindrical Lithium-Ion Battery
    Jeon, Minkyu
    Lee, Eunsong
    Park, Hyunwook
    Yoon, Hongsik
    Keel, Sangin
    BATTERIES-BASEL, 2022, 8 (10):
  • [27] Experimental Investigation of Lithium-Ion Batteries Thermal Runaway Propagation Consequences under Different Triggering Modes
    Yang, Juan
    Liu, Wenhao
    Zhao, Haoyu
    Zhang, Qingsong
    AEROSPACE, 2024, 11 (06)
  • [28] Comparison on Thermal Runaway and Critical Characteristics of Cylindrical Lithium-Ion Batteries: A Review
    Li, Wei
    Wang, Jiasheng
    Sun, Chunfeng
    Fan, Xiaoping
    Gong, Lingzhu
    Huang, Jiale
    Wu, Jian-heng
    Yu, Gending
    Chen, Rongguo
    Li, Jingling
    Duh, Yih-Shing
    ACS CHEMICAL HEALTH & SAFETY, 2025,
  • [29] Thermal Abuse Tests for Lithium-ion Batteries
    Wang, Hong-Wei
    Fu, Yan-Ling
    Tao, Zi-Qiang
    Bai, Hong
    Bai, Hua
    International Conference on Mechanics, Building Material and Civil Engineering (MBMCE 2015), 2015, : 767 - 770
  • [30] Review of Gas Generation Behavior during Thermal Runaway of Lithium-Ion Batteries
    Qi, Chuang
    Liu, Zhenyan
    Lin, Chunjing
    Hu, Yuanzhi
    SAE INTERNATIONAL JOURNAL OF ELECTRIFIED VEHICLES, 2024, 13 (03):