A deep learning knowledge graph neural network for recommender systems

被引:4
|
作者
Kaur, Gurinder [1 ]
Liu, Fei [1 ]
Chen, Yi-Ping Phoebe [1 ]
机构
[1] La Trobe Univ, Dept Comp Sci & Informat Technol, Bundoora, Vic, Australia
来源
关键词
Collaborative filtering; Graph neural network; Recommender system; Knowledge graph;
D O I
10.1016/j.mlwa.2023.100507
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graphs are becoming the new state-of-the-art for recommender systems. This paper is based on knowledge graphs to alleviate the problem of data sparsity. Various methods have been recently deployed to solve this problem which largely attempts to study user-item representation and then recommend items to users based on these representations. Although these methods are effective, they lack explainability for recommendations and do not mine side information. In this paper, we propose the use of knowledge graphs which includes additional information about users and items in addition to the use of a user/item interaction matrix. The vital element of our model is neighbourhood aggregation for collaborative filtering. Every user and item are associated with an ID embedding, which is circulated on the interaction graph for users, items, and their attributes. We obtain the final embeddings by combining the embeddings learned at various hidden layers with a biased sum. Our model is easier to train and achieves better performance compared to graph neural network-based collaborative filtering (GCF) and other state-of-the-art recommender methods. We provide evidence for our argument by analytically comparing the knowledge graph convolution network (KGCN) with GCF and eight other state-ofthe-art methods, using similar experimental settings and the same datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Adaptive Graph Neural Network with Incremental Learning Mechanism for Knowledge Graph Reasoning
    Zhang, Junhui
    Zan, Hongying
    Wu, Shuning
    Zhang, Kunli
    Huo, Jianwei
    ELECTRONICS, 2024, 13 (14)
  • [32] Wide and Deep Graph Neural Network With Distributed Online Learning
    Gao, Zhan
    Gama, Fernando
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3862 - 3877
  • [33] Scalable Causal Graph Learning through a Deep Neural Network
    Xu, Chenxiao
    Huang, Hao
    Yoo, Shinjae
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 1853 - 1862
  • [34] MKGCN: Multi-Modal Knowledge Graph Convolutional Network for Music Recommender Systems
    Cui, Xiaohui
    Qu, Xiaolong
    Li, Dongmei
    Yang, Yu
    Li, Yuxun
    Zhang, Xiaoping
    ELECTRONICS, 2023, 12 (12)
  • [35] Unexpected interest recommender system with graph neural network
    Xia, Hongbin
    Huang, Kai
    Liu, Yuan
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (04) : 3819 - 3833
  • [36] Neural Network Approaches for Recommender Systems
    Zharova, M. A.
    Tsurkov, V. I.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2023, 62 (06) : 1048 - 1062
  • [37] Unexpected interest recommender system with graph neural network
    Hongbin Xia
    Kai Huang
    Yuan Liu
    Complex & Intelligent Systems, 2023, 9 : 3819 - 3833
  • [38] Neural Network Approaches for Recommender Systems
    M. A. Zharova
    V. I. Tsurkov
    Journal of Computer and Systems Sciences International, 2023, 62 : 1048 - 1062
  • [39] Graph Learning based Recommender Systems: A Review
    Wang, Shoujin
    Hu, Liang
    Wang, Yan
    He, Xiangnan
    Sheng, Quan Z.
    Orgun, Mehmet A.
    Cao, Longbing
    Ricci, Francesco
    Yu, Philip S.
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4644 - 4652
  • [40] Deep Neural Network Based on Translation Model for Diabetes Knowledge Graph
    Yin, Suna
    Chen, Dehua
    Le, Jiajin
    2017 FIFTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2017, : 318 - 323