Rotational motion of skyrmion driven by optical vortex in frustrated magnets

被引:0
|
作者
Lei, Y. M. [1 ,2 ]
Yang, Q. Q. [1 ,2 ]
Tang, Z. H. [1 ,2 ,3 ]
Tian, G. [1 ,2 ]
Hou, Z. P. [1 ,2 ]
Qin, M. H. [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Inst Adv Mat, South China Acad Adv Optoelect, Guangzhou 510006, Peoples R China
[3] Xiangnan Univ, Sch Phys & Elect Elect Engn, Microelect & Optoelect Technol Key Lab Hunan Highe, Chenzhou 423000, Peoples R China
关键词
ORBITAL ANGULAR-MOMENTUM; DYNAMICS; LIGHT; GENERATION; PLASMONICS; STATES;
D O I
10.1063/5.0212067
中图分类号
O59 [应用物理学];
学科分类号
摘要
Effective control of skyrmion rotation is of significant importance in designing skyrmion-based nano-oscillators. In this work, we numerically study the optical vortex-driven skyrmion rotation in frustrated magnets using the Landau-Lifshitz-Gilbert simulations. The skyrmion rotation is induced by the orbital angular momentum (OAM) transfer from the optical vortex to the skyrmion, which is regardless of the sign of the OAM quantum number m due to the helicity degree of freedom of the frustrated skyrmion. This property highly broadens the parameter range of the optical vortex in controlling the skyrmion rotation. The direction of the rotation is determined by the sign of m, and the radius and angular velocity depend on the magnitude of m, light polarization, and intensity. Interestingly, the helicity oscillation induced by the linearly polarized beam is much slower than that driven by the circularly polarized beam with a same intensity, resulting in a faster rotation of the skyrmion. This phenomenon demonstrates the advantage of the linearly polarized beam in controlling the dynamics of the frustrated skyrmion, benefiting energy-saving and high-efficient device design.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Current-driven skyrmion motion in granular films
    Gong, Xin
    Yuan, H. Y.
    Wang, X. R.
    PHYSICAL REVIEW B, 2020, 101 (06)
  • [32] Thermally assisted current-driven skyrmion motion
    Troncoso, Roberto E.
    Nunez, Alvaro S.
    PHYSICAL REVIEW B, 2014, 89 (22):
  • [33] Skyrmion Motion in Ferrimagnets Driven by Magnetic Anisotropy Gradient
    Xu, Huan
    Yang, Qianqian
    Liu, Yang
    Tian, Guo
    Qiu, Lei
    Qin, Minghui
    Hou, Zhipeng
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2024, 18 (05):
  • [34] Temperature-Gradient-Driven Magnetic Skyrmion Motion
    Raimondo, Eleonora
    Saugar, Elias
    Barker, Joseph
    Rodrigues, Davi
    Giordano, Anna
    Carpentieri, Mario
    Jiang, Wanjun
    Chubykalo-Fesenko, Oksana
    Tomasello, Riccardo
    Finocchio, Giovanni
    PHYSICAL REVIEW APPLIED, 2022, 18 (02):
  • [35] Numerical simulation of micro- and nanoparticles orbital motion driven by an optical vortex
    Tsujia, Tetsuro
    Kawano, Satoyuki
    OPTICAL MANIPULATION AND STRUCTURED MATERIALS CONFERENCE 2020, 2020, 11522
  • [36] Orbital analysis of single nanoparticle in-plane motion driven by an optical vortex
    Nakajima, Kichitaro
    Tsujimura, Tempei
    Doi, Kentaro
    Kawano, Satoyuki
    OPTICAL MANIPULATION AND STRUCTURED MATERIALS CONFERENCE 2020, 2020, 11522
  • [37] Fractional Brownian motion of worms in worm algorithms for frustrated Ising magnets
    Rakala, Geet
    Damle, Kedar
    Dhar, Deepak
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [38] Sliding Dynamics of Current-Driven Skyrmion Crystal and Helix in Chiral Magnets
    Xie, Ying-Ming
    Liu, Yizhou
    Nagaosa, Naoto
    PHYSICAL REVIEW LETTERS, 2024, 133 (09)
  • [39] Voltage-Driven High-Speed Skyrmion Motion in a Skyrmion-Shift Device
    Liu, Yizheng
    Lei, Na
    Wang, Chengxiang
    Zhang, Xichao
    Kang, Wang
    Zhu, Daoqian
    Zhou, Yan
    Liu, Xiaoxi
    Zhang, Youguang
    Zhao, Weisheng
    PHYSICAL REVIEW APPLIED, 2019, 11 (01)
  • [40] The rectilinear motion of the individual asymmetrical skyrmion driven by temperature gradients
    Wang, Yu
    Shimada, Takahiro
    Wang, Jie
    Kitamura, Takayuki
    Hirakata, Hiroyuki
    ACTA MATERIALIA, 2021, 221