Near-optimal fitting of ellipsoids to random points

被引:0
|
作者
Potechin, Aaron [1 ]
Turner, Paxton [2 ]
Venkat, Prayaag [2 ]
Wein, Alexander S. [3 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Harvard Univ, Cambridge, MA USA
[3] Univ Calif Davis, Davis, CA USA
来源
THIRTY SIXTH ANNUAL CONFERENCE ON LEARNING THEORY, VOL 195 | 2023年 / 195卷
关键词
High-dimensional probability; semi-definite programming; phase transitions; convex geometry; LOWER BOUNDS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given independent standard Gaussian points v(1), . . . , v(n) in dimension d, for what values of (n, d) does there exist with high probability an origin-symmetric ellipsoid that simultaneously passes through all of the points? This basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis. Based on strong numerical evidence, Saunderson, Parrilo, and Willsky (Saunderson, 2011; Saunderson et al., 2013) conjectured that the ellipsoid fitting problem transitions from feasible to infeasible as the number of points n increases, with a sharp threshold at n similar to d(2)/4. We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some n = d(2)/polylog(d). Our proof demonstrates feasibility of the least squares construction of (Saunderson, 2011; Saunderson et al., 2013) using a convenient decomposition of a certain non-standard random matrix and a careful analysis of its Neumann expansion via the theory of graph matrices.
引用
收藏
页数:61
相关论文
共 50 条
  • [21] Distributed near-optimal matching
    Deng, XT
    COMBINATORICA, 1996, 16 (04) : 453 - 464
  • [22] NEAR-OPTIMAL DECODING ALGORITHM
    KOROGODI.AM
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1972, 26 (09) : 130 - 132
  • [23] THE NEAR-OPTIMAL INSTRUCTION SET
    SMITH, T
    IEEE MICRO, 1982, 2 (03) : 5 - 6
  • [24] Near-Optimal Online Auctions
    Blum, Avrim
    Hartline, Jason D.
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 1156 - 1163
  • [25] Near-optimal terrain collision
    Malaek, S. M.
    Abbasi, A.
    2006 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2006, : 2990 - +
  • [26] Near-optimal adaptive polygonization
    Seibold, W
    Joy, KI
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 1999, : 206 - 213
  • [27] Near-Optimal Light Spanners
    Chechik, Shiri
    Wulff-Nilsen, Christian
    ACM TRANSACTIONS ON ALGORITHMS, 2018, 14 (03)
  • [28] Near-optimal block alignments
    Tseng, Kuo-Tsung
    Yang, Chang-Biau
    Huang, Kuo-Si
    Peng, Yung-Hsing
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (03): : 789 - 795
  • [29] Near-optimal list colorings
    Molloy, M
    Reed, B
    RANDOM STRUCTURES & ALGORITHMS, 2000, 17 (3-4) : 376 - 402
  • [30] Near-optimal sequence alignment
    Vingron, M
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 1996, 6 (03) : 346 - 352