Multi-Source Survival Domain Adaptation

被引:0
|
作者
Shaker, Ammar [1 ]
Lawrence, Carolin [1 ]
机构
[1] NEC Labs Europe GmbH, Heidelberg, Germany
关键词
REGRESSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Survival analysis is the branch of statistics that studies the relation between the characteristics of living entities and their respective survival times, taking into account the partial information held by censored cases. A good analysis can, for example, determine whether one medical treatment for a group of patients is better than another. With the rise of machine learning, survival analysis can be modeled as learning a function that maps studied patients to their survival times. To succeed with that, there are three crucial issues to be tackled. First, some patient data is censored: we do not know the true survival times for all patients. Second, data is scarce, which led past research to treat different illness types as domains in a multi-task setup. Third, there is the need for adaptation to new or extremely rare illness types, where little or no labels are available. In contrast to previous multi-task setups, we want to investigate how to efficiently adapt to a new survival target domain from multiple survival source domains. For this, we introduce a new survival metric and the corresponding discrepancy measure between survival distributions. These allow us to define domain adaptation for survival analysis while incorporating censored data, which would otherwise have to be dropped. Our experiments on two cancer data sets reveal a superb performance on target domains, a better treatment recommendation, and a weight matrix with a plausible explanation.
引用
收藏
页码:9752 / 9762
页数:11
相关论文
共 50 条
  • [41] Multi-Source Domain Adaptation with Mixture of Joint Distributions
    Chen, Sentao
    Pattern Recognition, 2024, 149
  • [42] Structure-Preserved Multi-Source Domain Adaptation
    Liu, Hongfu
    Shao, Ming
    Fu, Yun
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1059 - 1064
  • [43] Iterative Refinement for Multi-Source Visual Domain Adaptation
    Wu, Hanrui
    Yan, Yuguang
    Lin, Guosheng
    Yang, Min
    Ng, Michael K.
    Wu, Qingyao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (06) : 2810 - 2823
  • [44] Multi-Source Domain Adaptation and Fusion for Speaker Verification
    Zhu, Donghui
    Chen, Ning
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 2103 - 2116
  • [45] Weighted progressive alignment for multi-source domain adaptation
    Wu, Kunhong
    Li, Liang
    Han, Yahong
    MULTIMEDIA SYSTEMS, 2023, 29 (01) : 117 - 128
  • [46] Dual collaboration for decentralized multi-source domain adaptation
    Wei, Yikang
    Han, Yahong
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (12) : 1780 - 1794
  • [47] Multi-Source Domain Adaptation with Mixture of Joint Distributions
    Chen, Sentao
    PATTERN RECOGNITION, 2024, 149
  • [48] Multi-Source Domain Adaptation for Medical Image Segmentation
    Pei, Chenhao
    Wu, Fuping
    Yang, Mingjing
    Pan, Lin
    Ding, Wangbin
    Dong, Jinwei
    Huang, Liqin
    Zhuang, Xiahai
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (04) : 1640 - 1651
  • [49] Cycle Self-Refinement for Multi-Source Domain AdaptationCycle Self-Refinement for Multi-Source Domain Adaptation
    Zhou, Chaoyang
    Wang, Zengmao
    Du, Bo
    Luo, Yong
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 17096 - 17104
  • [50] Contrastive Adaptation Network for Single- and Multi-Source Domain Adaptation
    Kang, Guoliang
    Jiang, Lu
    Wei, Yunchao
    Yang, Yi
    Hauptmann, Alexander
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (04) : 1793 - 1804