Multi-Source Survival Domain Adaptation

被引:0
|
作者
Shaker, Ammar [1 ]
Lawrence, Carolin [1 ]
机构
[1] NEC Labs Europe GmbH, Heidelberg, Germany
关键词
REGRESSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Survival analysis is the branch of statistics that studies the relation between the characteristics of living entities and their respective survival times, taking into account the partial information held by censored cases. A good analysis can, for example, determine whether one medical treatment for a group of patients is better than another. With the rise of machine learning, survival analysis can be modeled as learning a function that maps studied patients to their survival times. To succeed with that, there are three crucial issues to be tackled. First, some patient data is censored: we do not know the true survival times for all patients. Second, data is scarce, which led past research to treat different illness types as domains in a multi-task setup. Third, there is the need for adaptation to new or extremely rare illness types, where little or no labels are available. In contrast to previous multi-task setups, we want to investigate how to efficiently adapt to a new survival target domain from multiple survival source domains. For this, we introduce a new survival metric and the corresponding discrepancy measure between survival distributions. These allow us to define domain adaptation for survival analysis while incorporating censored data, which would otherwise have to be dropped. Our experiments on two cancer data sets reveal a superb performance on target domains, a better treatment recommendation, and a weight matrix with a plausible explanation.
引用
收藏
页码:9752 / 9762
页数:11
相关论文
共 50 条
  • [1] A survey of multi-source domain adaptation
    Sun, Shiliang
    Shi, Honglei
    Wu, Yuanbin
    INFORMATION FUSION, 2015, 24 : 84 - 92
  • [2] Multi-Source Distilling Domain Adaptation
    Zhao, Sicheng
    Wang, Guangzhi
    Zhang, Shanghang
    Gu, Yang
    Li, Yaxian
    Song, Zhichao
    Xu, Pengfei
    Hu, Runbo
    Chai, Hua
    Keutzer, Kurt
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12975 - 12983
  • [3] BAYESIAN MULTI-SOURCE DOMAIN ADAPTATION
    Sun, Shi-Liang
    Shi, Hong-Lei
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 24 - 28
  • [4] Multi-source multi-modal domain adaptation
    Zhao, Sicheng
    Jiang, Jing
    Tang, Wenbo
    Zhu, Jiankun
    Chen, Hui
    Xu, Pengfei
    Schuller, Bjorn W.
    Tao, Jianhua
    Yao, Hongxun
    Ding, Guiguang
    INFORMATION FUSION, 2025, 117
  • [5] Wasserstein Barycenter for Multi-Source Domain Adaptation
    Montesuma, Eduardo Fernandes
    Mboula, Fred Maurice Ngole
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16780 - 16788
  • [6] Unsupervised Multi-source Domain Adaptation for Regression
    Richard, Guillaume
    de Mathelin, Antoine
    Hebrail, Georges
    Mougeot, Mathilde
    Vayatis, Nicolas
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 395 - 411
  • [7] On the analysis of adaptability in multi-source domain adaptation
    Redko, Ievgen
    Habrard, Amaury
    Sebban, Marc
    MACHINE LEARNING, 2019, 108 (8-9) : 1635 - 1652
  • [8] Multi-source Domain Adaptation for Semantic Segmentation
    Zhao, Sicheng
    Li, Bo
    Yue, Xiangyu
    Gu, Yang
    Xu, Pengfei
    Hu, Runbo
    Chai, Hua
    Keutzer, Kurt
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] Multi-Source Contribution Learning for Domain Adaptation
    Li, Keqiuyin
    Lu, Jie
    Zuo, Hua
    Zhang, Guangquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5293 - 5307
  • [10] Multi-Source Domain Adaptation: A Causal View
    Zhang, Kun
    Gong, Mingming
    Schoelkopf, Bernhard
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3150 - 3157