Enhanced Energy Storage Properties in Paraelectrics via Entropy Engineering

被引:4
|
作者
Lan, Shun [1 ]
Meng, Fanqi [1 ]
Yang, Bingbing [1 ,2 ]
Wang, Yue [1 ]
Liu, Yiqian [1 ]
Dou, Lvye [1 ]
Yang, Letao [1 ]
Pan, Hao [3 ]
Kong, Xi [1 ]
Ma, Jing [1 ]
Shen, Yang [1 ]
Nan, Ce-Wen [1 ]
Lin, Yuan-Hua [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Foshan Southern China Inst New Mat, Foshan 528200, Peoples R China
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
来源
ADVANCED PHYSICS RESEARCH | 2023年 / 2卷 / 11期
基金
中国国家自然科学基金;
关键词
energy storage; paraelectrics; high-entropy systems; leakage; thin films; DENSITY; FILMS; EFFICIENCY; BAZRXTI1-XO3; CAPACITORS;
D O I
10.1002/apxr.202300006
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electrostatic energy storage capacitors based on dielectrics have attracted much attention due to their wide applications in advanced electrical technology and electronic devices. Generally, high energy density is achieved at a high electric field, while conduction loss becomes nonnegligible, which harms practical applications. Here distinctly suppressed leakage current in BaZr0.5Ti0.5O3-based films by entropy engineering is realized. With increased entropy, the leakage current density decreases by two orders of magnitude at the electric field of 3 MV cm-1, leading to a markedly improved energy efficiency of 87% at an ultrahigh breakdown strength of 8 MV cm-1 in high-entropy films. Thereby, a high energy density of 51.9 J cm-3 is achieved. This work demonstrates the effectiveness of entropy engineering in improving the breakdown strength of dielectric films and shows great potential in enhancing the energy storage performance of capacitors. Entropy-modulated Ba(Zr, Ti)O3-based films with high orientation are prepared, and the continuous evolution of dielectric properties with entropy is studied. Significantly suppressed leakage current density leads to an ultrahigh breakdown strength of 8 MV cm-1 and enhances energy density of 51.9 J cm-3 in the high-entropy films, thereby providing a feasible approach to high-performance energy storage capacitors. image
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Enhanced energy storage properties of BNT-based ceramics via composition and multiscale structural engineering
    Qiao, Xiaoshuang
    Liao, Aizhen
    Chen, Bi
    Zhang, Hanlu
    Zhang, Linji
    Kong, Ting
    Chao, Xiaolian
    Yang, Zupei
    SOLID STATE SCIENCES, 2023, 136
  • [2] Engineering relaxors by entropy for high energy storage performance
    Yang, Bingbing
    Zhang, Qinghua
    Huang, Houbing
    Pan, Hao
    Zhu, Wenxuan
    Meng, Fanqi
    Lan, Shun
    Liu, Yiqian
    Wei, Bin
    Liu, Yiqun
    Yang, Letao
    Gu, Lin
    Chen, Long-Qing
    Nan, Ce-Wen
    Lin, Yuan-Hua
    NATURE ENERGY, 2023, 8 (09) : 956 - +
  • [3] Engineering relaxors by entropy for high energy storage performance
    Bingbing Yang
    Qinghua Zhang
    Houbing Huang
    Hao Pan
    Wenxuan Zhu
    Fanqi Meng
    Shun Lan
    Yiqian Liu
    Bin Wei
    Yiqun Liu
    Letao Yang
    Lin Gu
    Long-Qing Chen
    Ce-Wen Nan
    Yuan-Hua Lin
    Nature Energy, 2023, 8 : 956 - 964
  • [4] High-entropy enhanced capacitive energy storage
    Bingbing Yang
    Yang Zhang
    Hao Pan
    Wenlong Si
    Qinghua Zhang
    Zhonghui Shen
    Yong Yu
    Shun Lan
    Fanqi Meng
    Yiqian Liu
    Houbing Huang
    Jiaqing He
    Lin Gu
    Shujun Zhang
    Long-Qing Chen
    Jing Zhu
    Ce-Wen Nan
    Yuan-Hua Lin
    Nature Materials, 2022, 21 : 1074 - 1080
  • [5] High-entropy enhanced capacitive energy storage
    Yang, Bingbing
    Zhang, Yang
    Pan, Hao
    Si, Wenlong
    Zhang, Qinghua
    Shen, Zhonghui
    Yu, Yong
    Lan, Shun
    Meng, Fanqi
    Liu, Yiqian
    Huang, Houbing
    He, Jiaqing
    Gu, Lin
    Zhang, Shujun
    Chen, Long-Qing
    Zhu, Jing
    Nan, Ce-Wen
    Lin, Yuan-Hua
    NATURE MATERIALS, 2022, 21 (09) : 1074 - +
  • [6] Significantly enhanced mechanical properties of NiCoV medium-entropy alloy via precipitation engineering
    He, Junyang
    Cai, Weijin
    Li, Na
    Wang, Li
    Wang, Zhangwei
    Dai, Shuai
    Lei, Zhifeng
    Wu, Zhenggang
    Song, Min
    Lu, Zhaoping
    INTERNATIONAL JOURNAL OF PLASTICITY, 2024, 183
  • [7] Enhanced energy storage properties and dielectric stabilities in BNT-based ceramics via multiphase and dielectric peak broadening engineering
    Chen, Yanhong
    Wang, Yuesha
    Zhao, Daen
    Wang, Hua
    He, Xuemei
    Zheng, Qiaoji
    Lin, Dunmin
    Materials Chemistry and Physics, 2022, 290
  • [8] Enhanced energy storage properties and dielectric stabilities in BNT-based ceramics via multiphase and dielectric peak broadening engineering
    Chen, Yanhong
    Wang, Yuesha
    Zhao, Daen
    Wang, Hua
    He, Xuemei
    Zheng, Qiaoji
    Lin, Dunmin
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 290
  • [9] Achieving high energy storage properties in perovskite oxide via high-entropy design
    Ning, Yating
    Pu, Yongping
    Zhang, Qianwen
    Zhou, Shiyu
    Wu, Chunhui
    Zhang, Lei
    Shi, Yu
    Sun, Zixiong
    CERAMICS INTERNATIONAL, 2023, 49 (08) : 12214 - 12223
  • [10] Enhanced Energy Storage Properties in Tm-Doped Antiferroelectric Ceramics by Engineering Grain Boundaries
    Xu L.
    Chen L.
    Zhao Q.
    Yang H.
    Ding J.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (04): : 1267 - 1276