Explainable reinforcement learning for distribution network reconfiguration

被引:2
|
作者
Gholizadeh, Nastaran [1 ]
Musilek, Petr [1 ,2 ]
机构
[1] Univ Alberta, Elect & Comp Engn, Edmonton, AB, Canada
[2] Univ Hradec Kralove, Appl Cybernet, Hradec Kralove, Czech Republic
基金
加拿大自然科学与工程研究理事会;
关键词
Distribution network reconfiguration; Reinforcement learning; Deep Q-learning; Data-driven control; Explainable machine learning; DYNAMIC RECONFIGURATION; OPERATION;
D O I
10.1016/j.egyr.2024.05.031
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The lack of transparency in reinforcement learning methods' decision-making process has resulted in a significant lack of trust towards these models, subsequently limiting their utilization in critical decisionmaking applications. The use of reinforcement learning in distribution network reconfiguration is an inherently sensitive application due to the need to change the states of the switches, which can significantly impact the lifespan of the switches. Consequently, executing this process requires meticulous and deliberate consideration. This study presents a new methodology to analyze and elucidate reinforcement learning-based decisions in distribution network reconfiguration. The proposed approach involves the training of an explainer neural network based on the decisions of the reinforcement learning agent. The explainer network receives as input the active and reactive power of the buses at each hour and outputs the line states determined by the agent. To delve deeper into the inner workings of the explainer network, attribution methods are employed. These techniques facilitate the examination of the intricate relationship between the inputs and outputs of the network, offering valuable insights into the agent's decision-making process. The efficacy of this novel approach is demonstrated through its application to both the 33- and 136 -bus test systems, and the obtained results are presented.
引用
收藏
页码:5703 / 5715
页数:13
相关论文
共 50 条
  • [31] A Reinforcement Learning Framework for Explainable Recommendation
    Wang, Xiting
    Chen, Yiru
    Yang, Jie
    Wu, Le
    Wu, Zhengtao
    Xie, Xing
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 587 - 596
  • [32] Explainable Agency in Reinforcement Learning Agents
    Madumal, Prashan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13724 - 13725
  • [33] Reliability-driven distribution power network dynamic reconfiguration in presence of distributed generation by the deep reinforcement learning method
    Malekshah, Soheil
    Rasouli, Ali
    Malekshah, Yaser
    Ramezani, Afsaneh
    Malekshah, Arezoo
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (08) : 6541 - 6556
  • [34] Multi-level dynamic reconfiguration and operation optimization method for an urban distribution network based on deep reinforcement learning
    Wang, Zihan
    Gao, Hongjun
    Gao, Yiwen
    Qing, Zhuyu
    Hu, Mingyang
    Liu, Junyong
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2022, 50 (24): : 60 - 70
  • [35] A Cloud-Edge Collaboration Solution for Distribution Network Reconfiguration Using Multi-Agent Deep Reinforcement Learning
    Gao, Hongjun
    Wang, Renjun
    He, Shuaijia
    Wang, Lingfeng
    Liu, Junyong
    Chen, Zhe
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 3867 - 3879
  • [36] Network Slice Reconfiguration by Exploiting Deep Reinforcement Learning With Large Action Space
    Wei, Fengsheng
    Feng, Gang
    Sun, Yao
    Wang, Yatong
    Qin, Shuang
    Liang, Ying-Chang
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04): : 2197 - 2211
  • [37] Distribution Network Reconfiguration Based on NoisyNet Deep Q-Learning Network
    Wang, Beibei
    Zhu, Hong
    Xu, Honghua
    Bao, Yuqing
    Di, Huifang
    IEEE ACCESS, 2021, 9 : 90358 - 90365
  • [38] Multi-modal Knowledge-aware Reinforcement Learning Network for Explainable Recommendation
    Tao, Shaohua
    Qiu, Runhe
    Ping, Yuan
    Ma, Hui
    KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [39] A Generalized Deep Reinforcement Learning Model for Distribution Network Reconfiguration with Power Flow-Based Action-Space Sampling
    Gholizadeh, Nastaran
    Musilek, Petr
    ENERGIES, 2024, 17 (20)
  • [40] Explainable Reinforcement Learning through a Causal Lens
    Madumal, Prashan
    Miller, Tim
    Sonenberg, Liz
    Vetere, Frank
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 2493 - 2500