The Collapse Mechanism of Slope Rill Sidewall under Composite Erosion of Freeze-Thaw Cycles and Water

被引:0
|
作者
Huang, Wenbin [1 ,2 ]
Shao, Shuai [1 ]
Liu, Yuhang [1 ]
Xu, Xiangtian [1 ,2 ]
Zhang, Weidong [2 ]
Liu, Yong [3 ]
机构
[1] Inner Mongolia Univ, Inst Transportat, Hohhot 010020, Peoples R China
[2] Inner Mongolia Univ, Sch Ecol & Environm, Hohhot 010020, Peoples R China
[3] Water Conservancy Dev Ctr Ordos, Ordos 017000, Peoples R China
关键词
rill erosion; three-dimensional reconstruction; freeze-thaw cycles; critical collapse conditions; SOIL-EROSION; GULLY EROSION; RAINFALL; RUNOFF; EROSIVITY; IMPACT; LOESS; USLE; WEPP;
D O I
10.3390/su16104144
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The composite erosion of freeze-thaw and water flow on slope rills is characterized by periodicity and spatial superposition. When revealing the collapse mechanism of slope rill sidewalls under the composite erosion of freeze-thaw and water flow, it is necessary to fully consider the effect of water migration and its impact on the stability of the rill sidewall. In this paper, we placed the self-developed collapse test system in an environmental chamber to carry out model tests on rill sidewall collapse on slopes under the composite erosion of freeze-thaw and water flow. We utilized three-dimensional reconstruction technology and the fixed grid coordinate method to reproduce the collapse process of the rill sidewall and precisely locate the top crack. We obtained the relationship between the water content of the specimen and mechanical indexes through the straight shear test. The main conclusions are as follows: The soil structure of the rill sidewall is significantly affected by the freeze-thaw cycle, which benefits capillary action in the soil. One freeze-thaw cycle has the most serious effect on the soil structure of the rill sidewall, and the change in the moisture field is more intense after the soil temperature drops below zero. The friction angle of the soil increases with the number of freeze-thaw cycles and tends to stabilize gradually. The effect of the freeze-thaw cycle on the rate of change of the water content of the soil at each position of the wall can be accurately described by a logarithmic function. The expression of the two-factor interaction effect on the rate of change of water content of soil at each position of the rill sidewall can be accurately fitted. We propose a calculation system for locating cracks at the top of the rill sidewall and determining the critical state of instability and collapse of the rill sidewall during the process of freeze-thaw and water flow composite erosion. The results of this research can help improve the accuracy of combined freeze-thaw and water flow erosion test equipment and the development of a prediction model for the collapse of the rill sidewall under compound erosion. This is of great significance for soil and water conservation and sustainability.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] Deterioration mechanism of sulfate attack on concrete under freeze-thaw cycles
    Ditao Niu
    Lei Jiang
    Qiannan Fei
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28 : 1172 - 1176
  • [12] Effect of Freeze-Thaw Cycles on Slope Stability in Cold Climates
    Ahmed, Asif
    Gupta, Alinda
    IFCEE 2024: EARTH RETAINING SYSTEMS, GROUND IMPROVEMENT, AND SEEPAGE CONTROL, 2024, 355 : 50 - 60
  • [13] Influence of Soil Heterogeneity on the Behavior of Frozen Soil Slope under Freeze-Thaw Cycles
    Liu, Kang
    Wang, Yanqiao
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 131 (01): : 119 - 135
  • [14] Failure Mechanism of the Yizhuxiang Collapse under the Joint Effect of Freeze-Thaw and Mining
    Hu, Shenghua
    Hu, Yuanjun
    Xu, Huiyuan
    Ai, Dong
    Yuan, Jingjing
    Kou, Lei
    Huang, Wei
    Zhou, Chang
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [15] Deterioration of concrete under the coupling action of freeze-thaw cycles and salt solution erosion
    Li, Hao
    Guo, Haolong
    Zhang, Yuan
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2022, 61 (01) : 322 - 333
  • [16] The Influence Mechanism of Freeze-Thaw on Soil Erosion: A Review
    Zhang, Lei
    Ren, Feipeng
    Li, Hao
    Cheng, Dongbing
    Sun, Baoyang
    WATER, 2021, 13 (08)
  • [17] On Deterioration Mechanism of Concrete Exposed to Freeze-Thaw Cycles
    Trofimov, B. Ya
    Kramar, L. Ya
    Schuldyakov, K. V.
    INTERNATIONAL CONFERENCE ON CONSTRUCTION, ARCHITECTURE AND TECHNOSPHERE SAFETY (ICCATS 2017), 2017, 262
  • [18] Dynamic Characteristics and Mechanism of the Saturated Compacted Loess under Freeze-Thaw Cycles
    Wang, Qian
    Liu, Fuqiang
    Zhong, Xiumei
    Gao, Zhongnan
    Liang, Shouyun
    Liang, Yuxin
    GEOFLUIDS, 2021, 2021
  • [19] Study of Damage Mechanism and Evolution Model of Concrete under Freeze-Thaw Cycles
    Zhao, Ning
    Lian, Shuailong
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [20] Effect of freeze-thaw cycles on root-Soil composite mechanical properties and slope stability
    Wang, Ruihong
    Jing, Zexin
    Luo, Hao
    Bao, Shun
    Jia, Jingru
    Zhan, Xiaoyu
    PLOS ONE, 2024, 19 (04):