Frustratingly Easy Truth Discovery

被引:0
|
作者
Meir, Reshef [1 ]
Amir, Ofra [1 ]
Ben-Porat, Omer [1 ]
Ben-Shabat, Tsviel [1 ]
Cohensius, Gal [1 ]
Xia, Lirong [2 ]
机构
[1] Technion Israel Inst Technol, Haifa, Israel
[2] Rensselaer Polytech Inst, Troy, NY USA
基金
以色列科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Truth discovery is a general name for a broad range of statistical methods aimed to extract the correct answers to questions, based on multiple answers coming from noisy sources. For example, workers in a crowdsourcing platform. In this paper, we consider an extremely simple heuristic for estimating workers' competence using average proximity to other workers. We prove that this estimates well the actual competence level and enables separating high and low quality workers in a wide spectrum of domains and statistical models. Under Gaussian noise, this simple estimate is the unique solution to the Maximum Likelihood Estimator with a constant regularization factor. Finally, weighing workers according to their average proximity in a crowdsourcing setting, results in substantial improvement over unweighted aggregation and other truth discovery algorithms in practice.
引用
收藏
页码:6074 / 6083
页数:10
相关论文
共 50 条
  • [21] Frustratingly hydrogenated
    Hahn, Frank
    Herres-Pawlis, Sonja
    Jacob, Christoph R.
    von Wangelin, Axel Jacobi
    Jahn, Ullrich
    Neffe, Axel T.
    Schnepf, Andreas
    NACHRICHTEN AUS DER CHEMIE, 2013, 61 (10) : 998 - 1000
  • [22] Modeling Truth Existence in Truth Discovery
    Zhi, Shi
    Zhao, Bo
    Tong, Wenzhu
    Gao, Jing
    Yu, Dian
    Ji, Heng
    Han, Jiawei
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1543 - 1552
  • [23] Frustratingly Easy Performance Improvements for Low-resource Setups: A Tale on BERT and Segment Embeddings
    van der Goot, Rob
    Mueller-Eberstein, Max
    Plank, Barbara
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 1418 - 1427
  • [24] PatternFinder: Pattern discovery for truth discovery
    Ye, Chen
    Wang, Hongzhi
    Ma, Tingting
    Gao, Jing
    Zhang, Hengtong
    Li, Jianzhong
    KNOWLEDGE-BASED SYSTEMS, 2019, 176 : 97 - 109
  • [25] A Frustratingly Easy Plug-and-Play Detection-and-Reasoning Module for Chinese Spelling Check
    Huang, Haojing
    Ye, Jingheng
    Zhou, Qingyu
    Li, Yinghui
    Li, Yangning
    Zhou, Feng
    Zheng, Hai-Tao
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 11514 - 11525
  • [26] Constrained Truth Discovery
    Ye, Chen
    Wang, Hongzhi
    Zheng, Kangjie
    Kong, Youkang
    Zhu, Rong
    Gao, Jing
    Li, Jianzhong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 205 - 218
  • [27] On the Discovery of Evolving Truth
    Li, Yaliang
    Li, Qi
    Gao, Jing
    Su, Lu
    Zhao, Bo
    Fan, Wei
    Han, Jiawei
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 675 - 684
  • [28] THE DISCOVERY OF ANALYTIC TRUTH
    ODEGARD, D
    PHILOSOPHY AND PHENOMENOLOGICAL RESEARCH, 1965, 26 (02) : 248 - 252
  • [29] Ground Truth for Binary Disassembly is Not Easy
    Pang, Chengbin
    Zhang, Tiantai
    Yu, Ruotong
    Mao, Bing
    Xu, Jun
    PROCEEDINGS OF THE 31ST USENIX SECURITY SYMPOSIUM, 2022, : 2479 - 2495
  • [30] Empowering Truth Discovery with Multi-Truth Prediction
    Wang, Xianzhi
    Sheng, Quan Z.
    Yao, Lina
    Li, Xue
    Fang, Xiu Susie
    Xu, Xiaofei
    Benatallah, Boualem
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 881 - 890