Enhanced Implicit Sentiment Understanding With Prototype Learning and Demonstration for Aspect-Based Sentiment Analysis

被引:3
|
作者
Su, Huizhe [1 ]
Wang, Xinzhi [1 ]
Li, Jinpeng [1 ]
Xie, Shaorong [1 ]
Luo, Xiangfeng [1 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Prototypes; Task analysis; Sentiment analysis; Semantics; Context modeling; Syntactics; Social computing; Aspect-based sentiment analysis (ABSA); attention mechanism; demonstration; implicit sentiment; prototype; social computing; NETWORK; MODEL;
D O I
10.1109/TCSS.2024.3368171
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of social computing, the task of aspect-based sentiment analysis (ABSA) aims to classify the sentiment polarity of a given aspect in a sentence. The absence of explicit opinion words in the implicit aspect sentiment expressions poses a greater challenge for capturing their sentiment features in the reviews from social media. Many recent efforts use dependency trees or attention mechanisms to model the association between the aspect and other contextual words. However, dependency tree-based methods are inefficient in constructing valuable associations for sentiment classification due to the lack of explicit opinion words. In addition, the use of attention mechanisms to obtain global semantic information easily leads to an undesired focus on irrelevant words that may have sentiments but are not directly related to the specific aspect. In this article, we propose a novel prototype-based demonstration (PD) model for the ABSA task, which contains prototype learning and PD stages. In the prototype learning stage, we employ mask-aware attention to capture the global sentiment feature of aspect and learn sentiment prototypes through contrastive learning. This allows us to acquire comprehensive central semantics of the sentiment polarity that contains the implicit sentiment features. In the PD stage, to provide explicit guidance for the latent knowledge within the T5 model, we utilize prototypes similar to the aspect sentiment as the neural demonstration. Our model outperforms others with a 1.68%/0.28% accuracy gain on the Laptop/Restaurant datasets, especially in the ISE slice, showing improvements of 1.17%/0.26%. These results confirm the superiority of our PD-ABSA in capturing implicit sentiment and improving classification performance. This provides a solution for implicit sentiment classification in social computing.
引用
收藏
页码:5631 / 5646
页数:16
相关论文
共 50 条
  • [41] Aspect-Based Sentiment Analysis for User Reviews
    Yin Zhang
    Jinyang Du
    Xiao Ma
    Haoyu Wen
    Giancarlo Fortino
    Cognitive Computation, 2021, 13 : 1114 - 1127
  • [42] SK2: Integrating Implicit Sentiment Knowledge and Explicit Syntax Knowledge for Aspect-Based Sentiment Analysis
    Li, Jia
    Zhao, Yuyuan
    Jin, Zhi
    Li, Ge
    Shen, Tao
    Tao, Zhengwei
    Tao, Chongyang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1114 - 1123
  • [43] Datasets for Aspect-Based Sentiment Analysis in French
    Apidianaki, Marianna
    Tannier, Xavier
    Richart, Cecile
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 1122 - 1126
  • [44] Data augmentation for aspect-based sentiment analysis
    Guangmin Li
    Hui Wang
    Yi Ding
    Kangan Zhou
    Xiaowei Yan
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 125 - 133
  • [45] A Survey on Multimodal Aspect-Based Sentiment Analysis
    Zhao, Hua
    Yang, Manyu
    Bai, Xueyang
    Liu, Han
    IEEE ACCESS, 2024, 12 : 12039 - 12052
  • [46] Aspect-Based Sentiment Analysis Approach with CNN
    Mulyo, Budi M.
    Widyantoro, Dwi H.
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 142 - 147
  • [47] A corpus for aspect-based sentiment analysis in Vietnamese
    Nguyen, Minh-Hao
    Nguyen, Tri Minh
    Thin, Dang Van
    Nguyen, Ngan Luu-Thuy
    PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2019), 2019, : 317 - 321
  • [48] Towards Generative Aspect-Based Sentiment Analysis
    Zhang, Wenxuan
    Li, Xin
    Deng, Yang
    Bing, Lidong
    Lam, Wai
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, 2021, : 504 - 510
  • [49] Aspect-based sentiment analysis of mobile reviews
    Gupta, Vedika
    Singh, Vivek Kumar
    Mukhija, Pankaj
    Ghose, Udayan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4721 - 4730
  • [50] Aspect-Based Sentiment Quantification
    Matsiiako, Vladyslav
    Frasincar, Flavius
    Boekestijn, David
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (04) : 1718 - 1729