Bitstream-Corrupted Video Recovery: A Novel Benchmark Dataset and Method

被引:0
|
作者
Liu, Tianyi [1 ]
Wu, Kejun [1 ]
Wang, Yi [2 ]
Liu, Wenyang [1 ]
Yap, Kim-Hui [1 ]
Chau, Lap-Pui [2 ]
机构
[1] Nanyang Technol Univ, Sch EEE, Singapore, Singapore
[2] Hong Kong Polytech Univ, Dept EEE, Hong Kong, Peoples R China
基金
新加坡国家研究基金会;
关键词
OBJECT REMOVAL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The past decade has witnessed great strides in video recovery by specialist technologies, like video inpainting, completion, and error concealment. However, they typically simulate the missing content by manual-designed error masks, thus failing to fill in the realistic video loss in video communication (e.g., telepresence, live streaming, and internet video) and multimedia forensics. To address this, we introduce the bitstream-corrupted video (BSCV) benchmark, the first benchmark dataset with more than 28,000 video clips, which can be used for bitstream-corrupted video recovery in the real world. The BSCV is a collection of 1) a proposed three-parameter corruption model for video bitstream, 2) a large-scale dataset containing rich error patterns, multiple corruption levels, and flexible dataset branches, and 3) a new video recovery framework that serves as a benchmark. We evaluate state-of-the-art video inpainting methods on the BSCV dataset, demonstrating existing approaches' limitations and our framework's advantages in solving the bitstream-corrupted video recovery problem. The benchmark and dataset are released at https://github.com/LIUTIGHE/BSCV- Dataset.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A Classification Method for Unbalanced Surveillance Video Dataset
    Li, Hui
    Chen, Li
    Tian, Jing
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 2821 - 2824
  • [42] VIDEO ANOMALY PREDICTION: PROBLEM, DATASET AND METHOD
    Wang, Yang
    Xu, Jun
    Zhou, Jiaogen
    Guan, Jihong
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3870 - 3874
  • [43] vCLIMB: A Novel Video Class Incremental Learning Benchmark
    Villa, Andres
    Alhamoud, Kumail
    Escorcia, Victor
    Heilbron, Fabian Caba
    Alcazar, Juan Leon
    Ghanem, Bernard
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19013 - 19022
  • [44] Video saliency prediction for First-Person View UAV videos: Dataset and benchmark
    Cai, Hao
    Zhang, Kao
    Chen, Zhao
    Jiang, Chenxi
    Chen, Zhenzhong
    NEUROCOMPUTING, 2024, 594
  • [45] Real-World Video Deblurring: A Benchmark Dataset and an Efficient Recurrent Neural Network
    Zhihang Zhong
    Ye Gao
    Yinqiang Zheng
    Bo Zheng
    Imari Sato
    International Journal of Computer Vision, 2023, 131 : 284 - 301
  • [46] Cross-Platform Video Person ReID: A New Benchmark Dataset and Adaptation Approach
    Zhang, Shizhou
    Luo, Wenlong
    Cheng, De
    Yang, Qingchun
    Ran, Lingyan
    Xing, Yinghui
    Zhang, Yanning
    COMPUTER VISION - ECCV 2024, PT XXVII, 2025, 15085 : 270 - 287
  • [47] Algebraic method for blind recovery of punctured convolutional encoders from an erroneous bitstream
    Marazin, M.
    Gautier, R.
    Burel, G.
    IET SIGNAL PROCESSING, 2012, 6 (02) : 122 - 131
  • [48] PolarBearVidID: A Video-Based Re-Identification Benchmark Dataset for Polar Bears
    Zuerl, Matthias
    Dirauf, Richard
    Koeferl, Franz
    Steinlein, Nils
    Sueskind, Jonas
    Zanca, Dario
    Brehm, Ingrid
    von Fersen, Lorenzo
    Eskofier, Bjoern
    ANIMALS, 2023, 13 (05):
  • [49] Inverse-tone-mapped HDR video quality assessment: A new dataset and benchmark
    Fan, Leidong
    Yang, Ao
    Guo, Cheng
    Jiang, Xiuhua
    Gao, Yixuan
    Min, Xiongkuo
    DISPLAYS, 2023, 80
  • [50] Real-World Video Deblurring: A Benchmark Dataset and an Efficient Recurrent Neural Network
    Zhong, Zhihang
    Gao, Ye
    Zheng, Yinqiang
    Zheng, Bo
    Sato, Imari
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (01) : 284 - 301