Topology-Driven Synchronization Interval Optimization for Latency-Constrained Geo-Decentralized Federated Learning
被引:1
|
作者:
Chen, Qi
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R China
Chen, Qi
[1
]
Yu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
China Mobile Res Inst, Business Res Dept, Beijing 100031, Peoples R ChinaBeijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R China
Yu, Wei
[2
]
Lyu, Xinchen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R China
Lyu, Xinchen
[1
]
Jia, Zimeng
论文数: 0引用数: 0
h-index: 0
机构:
China Mobile Res Inst, Business Res Dept, Beijing 100031, Peoples R ChinaBeijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R China
Jia, Zimeng
[2
]
Nan, Guoshun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R China
Nan, Guoshun
[1
]
Cui, Qimei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R China
Cui, Qimei
[1
]
机构:
[1] Beijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R China
[2] China Mobile Res Inst, Business Res Dept, Beijing 100031, Peoples R China
Federated learning;
edge intelligence;
latency-constrained;
communication efficiency;
EDGE;
D O I:
10.1109/OJCOMS.2024.3391731
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Geo-decentralized federated learning (FL) can empower fully distributed model training for future large-scale 6G networks. Without the centralized parameter server, the peer-to-peer model synchronization in geo-decentralized FL would incur excessive communication overhead. Some existing studies optimized synchronization interval for communication efficiency, but may not be applicable to latency-constrained geo-decentralized FL. This paper first proposes the synchronization interval optimization for latency-constrained geo-decentralized FL. The problem is formulated to maximize the model training accuracy within a time window under communication/computation constraints. We mathematically derive the convergence bound by jointly considering data heterogeneity, network topology and communication/computation resources. By minimizing the convergence bound, we optimize the synchronization interval based on the approximated system consistency metric. Extensive experiments on MNIST, Fashion-MNIST and CIFAR10 datasets validate the superiority of the proposed approach by achieving up to 30% higher accuracy than the state-of-the-art benchmarks.