A computational fluid dynamics coupled population balance model (CFD-PBM) was used to numerically simulate the fluid dynamics of bubble swarms in a bubble column containing non-Newtonian fluids. The effects of superficial gas velocity (U g ), the consistency index (K), and the flow index (n) on bubble size distribution (BSD), gas holdup, and fluid dynamic viscosity in a bubble column were analyzed at both local and overall scales. As U g increases, the bubble breakup occurs excessively, the gas holdup increases, and the dynamic viscosity decreases. K and n were used to characterize the rheological properties of power law fluid. As K increases, fluid viscosity increases, bubble breakup rate decreases, gas holdup in the top zone is slightly lower than in the middle zone, and dynamic viscosity increases. Within the range of n from 0.45 to 1.07, when n is smallest, the relative frequency of bubbles smaller than the initial size is relatively large, and the overall and local gas holdup are the highest. When n = 1.07, the fluid exhibits shear-thickening properties, and the dynamic viscosity variations are significant.