Vibration shock disturbance modeling in the rotating machinery fault diagnosis: A generalized mixture Gaussian model

被引:1
|
作者
Wang, Ran [1 ]
Gu, Zhixin [1 ]
Wang, Chaoge [1 ]
Yu, Mingjie [1 ]
Han, Wentao [1 ]
Yu, Liang [2 ,3 ]
机构
[1] Shanghai Maritime Univ, Coll Logist Engn, Shanghai 201306, Peoples R China
[2] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
[3] State Key Lab Airliner Integrat Technol & Flight S, Shanghai 200126, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Rotating machinery; Fault feature extraction; Complex noise modeling; Mixture of exponential power distribution; FEATURE-EXTRACTION; BEARING; DECOMPOSITION; TOOL;
D O I
10.1016/j.ymssp.2024.111594
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In real-world industrial environments, complex background noises are composed of various components, deviating from a simple Gaussian distribution like shock noise. In this work, a robust noise modeling method based on the mixture of exponential power (MoEP) distributions is developed to address this issue. To proficiently extract the fault characteristics, the signal's 2-D representation is attained via Fast-SC, both of the fault features' low-rankness and the complex noise are combined in a signal model. Then, a penalized function of the noise model is combined to further improve the performance of the method. The model is designated as the PMoEP enhanced low-rank model (PMoEP-LR). The Generalized Expectation-Maximization (GEM) algorithm is utilized to estimate the low-rank spectral correlation matrix and deduce all parameters of the PMoEP-LR model. Finally, the enhanced envelope spectrum (EES) is used to detect the defect characteristic. The efficacy of the proposed method is showcased by analyzing both simulated and real data.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Fault detection and diagnosis in rotating machinery
    Loparo, KA
    Afshari, N
    Abdel-Magied, M
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2986 - 2991
  • [22] Combination of modelling techniques for fault diagnosis of rotating machinery using vibration analysis
    Adgar, A
    Emmanouilidis, C
    McGarry, KJ
    COMADEM '99, PROCEEDINGS, 1999, : 259 - 269
  • [23] Study on self-learning for vibration fault diagnosis system of rotating machinery
    Ge, Zhihua
    Niu, Yuguang
    Song, Zhiping
    Fu, Zhongguang
    Proceedings of the ASME Power Conference 2005, Pts A and B, 2005, : 347 - 352
  • [24] The vibration fault diagnosis of high-speed rotating machinery based on the Simulation
    Tian, Yabin
    Qi, Xueyi
    Liang, Guobin
    EQUIPMENT MANUFACTURING TECHNOLOGY AND AUTOMATION, PTS 1-3, 2011, 317-319 : 2172 - +
  • [25] Research on vibration state monitoring and fault diagnosis system of chemical rotating machinery
    Yang X.
    Yang, Xinshun (xinshunyang38475@163.com), 2018, Italian Association of Chemical Engineering - AIDIC (66): : 745 - 750
  • [26] Design of vibration analysis and fault diagnosis for the rotating machinery based on virtual instrument
    Bao, Haitao
    Zhao, Xing
    Yuan, Yu
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY APPLICATIONS (ICCITA), 2016, 53 : 80 - 83
  • [27] Fault diagnosis of bearings in rotating machinery based on vibration power signal autocorrelation
    Sadoughi, Alireza
    Tashakkor, Soheil
    Ebrahimi, Mohammad
    Rezaei, Esmaeil
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 2352 - +
  • [28] Some examples of vibration fault diagnosis and remedies for rotating machinery in petrochemical industry
    Wang, Xinwu
    Huang, Runhua
    Ma, Weiping
    Journal of Mechanical Strength, 2002, 24 (04)
  • [29] The Study of Fault Diagnosis in Rotating Machinery
    Othman, Nor Azlan
    Damanhuri, Nor Salwa
    Kadirkamanathan, Visakan
    CSPA: 2009 5TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, 2009, : 69 - 74
  • [30] A Fault Diagnosis Model for Rotating Machinery Using VWC and MSFLA-SVM Based on Vibration Signal Analysis
    You, Lei
    Fan, Wenjie
    Li, Zongwen
    Liang, Ying
    Fang, Miao
    Wang, Jin
    SHOCK AND VIBRATION, 2019, 2019